
Networks of Evolutionary Picture Processors

with Filtered Connections

Paolo Bottoni1, Anna Labella1, Florin Manea2,∗,
Victor Mitrana2,3,�, and Jose M. Sempere3,��

1 Department of Computer Science, “Sapienza” University of Rome
Via Salaria 113, 00198 Rome, Italy

{bottoni,labella}@di.uniroma1.it
2 Faculty of Mathematics, University of Bucharest

Str. Academiei 14, 70109 Bucharest, Romania
{flmanea,mitrana}@fmi.unibuc.ro

3 Department of Information Systems and Computation
Technical University of Valencia,

Camino de Vera s/n. 46022 Valencia, Spain
jsempere@dsic.upv.es

Abstract. In this paper we simplify the model of computation consid-
ered in [1], namely network of evolutionary picture processors, by moving
the filters from the nodes to the edges. Each edge is now viewed as a two-
way channel such that input and output filters, respectively, of the two
nodes connected by the edge coincide. Thus, the possibility of control-
ling the computation in such networks seems to be diminished. In spite
of this observation all the results concerning the computational power of
networks of evolutionary picture processors reported in [1] are extended
over these simplified networks.

1 Introduction

The origin of accepting networks of evolutionary processors (ANEP for short)
is a basic architecture for parallel and distributed symbolic processing, related
to the Connection Machine [8] as well as the Logic Flow paradigm [5], which
consists of several very simple processors (called evolutionary processors), each
of them being placed in a node of a virtual complete graph. By an evolutionary
processor we mean an abstract processor which is able to perform very simple
operations, namely point mutations in a DNA sequence (insertion, deletion or
substitution of a pair of nucleotides). More generally, each node may be viewed
as a cell having genetic information encoded in DNA sequences which may evolve
by local evolutionary events, that is point mutations. Each node is specialized
just for one of these evolutionary operations. Furthermore, the data in each node
� Work supported by the PN-II Programs 11052 (GlobalComp) and 11056 (CellSim).

Victor Mitrana acknowledges support from Academy of Finland, project 132727.
�� Work supported by the Spanish Ministerio de Educación y Ciencia under project

TIN2007-60769.

C.S. Calude et al. (Eds.): UC 2009, LNCS 5715, pp. 70–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Networks of Evolutionary Picture Processors with Filtered Connections 71

is organized in the form of multisets of strings (each string appears in an arbi-
trarily large number of copies), and all copies are processed in parallel such that
all the possible events that can take place do actually take place once on each
copy. Further, all the nodes send simultaneously their data and the receiving
nodes handle also simultaneously all the arriving messages, according to some
strategies. The reader interested in a more detailed discussion about the model
is referred to [10,11] and the references thereof.

A picture (2-dimensional word) is a rectangular array of symbols over an al-
phabet. Picture languages defined by different mechanisms have been studied
extensively in the literature. For a survey on picture languages the reader may
consult [6] while an early survey on automata recognizing rectangular pictures
languages is [9].

The investigation on ANEPs started in [10] has been carried over rectangu-
lar picture in [1] where accepting networks of evolutionary picture processors
(ANEPP for short) have been considered. Each node of an ANEPP is either
a row/column substitution node or a row/column deletion node. The action of
each node on the data it contains is precisely defined. For instance, if a node
is a row substitution node, then it can substitute a letter by another letter in
either the topmost or the last or an arbitrary row. Moreover, if there are more
occurrences of the letter that is to be substituted in the row on which the sub-
stitution rule acts, then each such occurrence is substituted in different copies
of that picture. An implicit assumption is that arbitrarily many copies of every
picture are available. A similar informal explanation concerns the column sub-
stitution and deletion nodes, respectively. Two ways of accepting pictures are
considered in [1]: weak acceptance, when at least one output node is nonempty,
and strong acceptance, when all output nodes are nonempty. Every language
weakly accepted by a network can be strongly accepted by another network.
One shows that ANEPPs can weakly accept the complement of any local lan-
guage, as well as languages that are not recognizable. The problem of pattern
matching in pictures is then considered in the framework of ANEPPs.

It is clear that filters associated with each node allow a strong control of the
computation. Indeed, every node has an input and output filter; two nodes can
exchange data if it passes the output filter of the sender and the input filter of the
receiver. Moreover, if some data is sent out by some node and not able to enter
any node, then it is lost. In this paper we simplify the ANEPP model considered
in [1] by moving the filters from the nodes to the edges. A similar investigation
has been done for ANEPs in [3,4], where it was shown that both devices equal the
computational power of Turing machines. Each edge of a network of evolutionary
picture processors with filtered connections (ANEPPFC for short) is viewed as a
two-way channel such that the input and output filters, respectively, of the two
nodes connected by the edge coincide. Clearly, the possibility of controlling the
computation in such networks seems to be diminished. For instance, there is no
possibility to lose data during the communication steps. In spite of this fact we
can extend all the results reported in [1] to these new devices. Moreover, in all
cases the ANEPPFCs have a smaller size (number of processors). This suggests

72 P. Bottoni et al.

that moving the filters from the nodes to the edges does not decrease the computa-
tional power of the model. It is worth mentioning that a direct proof showing that
ANEPs and ANEPs with filtered connections are computationally equivalent was
proposed in [2]. However, that construction essentially need an operation that has
not a corresponding one in ANEPPs or ANEPPFCs, therefore we do not know a
proof for a direct simulation of one model by the other.

2 Basic Definitions

For basic terminology and notations concerning the theory of one-dimensional
languages the reader is referred to [13]. The definitions and notations concerning
two-dimensional languages are taken from [6].

The set of natural numbers from 1 to n is denoted by [n]. The cardinality of
a finite set A is denoted by card(A). Let V be an alphabet, V ∗ the set of one-
dimensional strings over V and ε the empty string. A picture (or two-dimensional
string) over the alphabet V is a two-dimensional array of elements from V . We
denote the set of all pictures over the alphabet V by V ∗∗ , while the empty picture
will be still denoted by ε. A two-dimensional language over V is a subset of V ∗∗ .
The minimal alphabet containing all symbols appearing in a picture π is denoted
by alph(π). Let π be a picture in V ∗∗ ; we denote the number of rows and the
number of columns of π by π and |π|, respectively. The pair (π, |π|) is called the
size of the picture π. The size of the empty picture ε is obviously (0, 0). The set of
all pictures over V of size (m, n), where m, n ≥ 1, is denoted by V n

m. The symbol
placed at the intersection of the ith row with the jth column of the picture π,
is denoted by π(i, j). The row picture of size (1, n) containing occurrences of
the symbol a only is denoted by an

1 . Similarly the column picture of size (m, 1)
containing occurrences of the symbol a only is denoted by a1

m.
We recall informally the row and column concatenation operations between

pictures. For a formal definition the reader is referred to [9] or [6]. The row con-
catenation of two pictures π of size (m, n) and ρ of size (m′, n′) is denoted by �
and is defined only if n = n′. The picture π�ρ is obtained by adding the picture
ρ below the last row of π. Analogously one defines the column concatenation
denoted by c©. We now recall from [1] the definition of four new operations, in
some sense the inverse operations of the row and column concatenation. Let π
and ρ be two pictures of size (m, n) and (m′, n′), respectively. We define

- The column right-quotient of π with ρ: π/→ρ = θ iff π = θ c©ρ.
- The column left-quotient of π with ρ: π/←ρ = θ iff π = ρ c©θ.
- The row down-quotient of π with ρ to the right: π/↓ρ = θ iff π = θ�ρ.
- The column up-quotient of π with ρ: π/↑ρ = θ iff π = ρ�θ.

We now proceed with the definition of an evolutionary picture processor follow-
ing [1]. We want to stress that the evolutionary processor described here is just
a mathematical concept similar to that of an evolutionary algorithm, both being
inspired from the Darwinian evolution. Let V be an alphabet; a rule of the form

Networks of Evolutionary Picture Processors with Filtered Connections 73

a→ b(X), with a, b ∈ V ∪ {ε} and X ∈ {−, |} is called an evolutionary rule. For
any rule a → b(X), X indicates which component of a picture (row if X = −
or column if X = |) the rule is applied to. We say that a rule a → b(X) is a
substitution rule if both a and b are not ε, is a deletion rule if a �= ε, b = ε,
and is an insertion rule if a = ε, b �= ε. In this paper we shall ignore insertion
rules because we want to process every given picture in a space bounded by
the size of that picture. We denote by RSubV = {a → b(−) | a, b ∈ V } and
RDelV = {a → ε(−) | a ∈ V }. The sets CSubV and CDelV are defined analo-
gously. Given a rule σ as above and a picture π ∈ V n

m, we define the following
actions of σ on π:

• If σ ≡ a→ b(|) ∈ CSubV , then

σ←(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{π′ ∈ V n
m : ∃i ∈ [m] (π(i, 1) = a & π′(i, 1) = b), π′(k, 1) = π(k, 1),

k ∈ [m] \ {i}, π′(j, l) = π(j, l), (j, l) ∈ [m]× ([n] \ {1})}

{π}, if the first column of π does not contain any occurrence
of the letter a.

σ→(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{π′ ∈ V n
m : ∃i ∈ [m] (π(i, n) = a & π′(i, n) = b), π′(k, n) = π(k, n),

k ∈ [m] \ {i}, π′(j, l) = π(j, l), (j, l) ∈ [m]× [n− 1]}

{π}, if the last column of π does not contain any occurrence
of the letter a.

σ∗(π) =

⎧
⎪⎪⎨

⎪⎪⎩

{π′ ∈ V n
m : ∃(i, j) ∈ [n]× [m] such that π(i, j) = a and

π′(i, j) = b, π′(k, l) = π(k, l), ∀(k, l) ∈ ([n]× [m]) \ {(i, j)}}

{π}, if no column of π contains any occurrence of the letter a.

Note that a rule as above is applied to all occurrences of the letter a either
in the first or in the last or in any column of π, respectively, in different copies
of the picture π. Analogously, we define:

• If σ ≡ a→ b(−) ∈ RSubV , then

σ↑(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{π′ ∈ V n
m : ∃i ∈ [n](π(1, i) = a & π′(1, i) = b), π′(1, k) = π(1, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ ([m] \ {1})× [n]}

{π}, if the first row of π does not contain any occurrence
of the letter a.

σ↓(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{π′ ∈ V n
m : ∃i ∈ [n](π(m, i) = a & π′(m, i) = b), π′(m, k) = π(m, k),

∀k ∈ [n] \ {i}, π′(j, l) = π(j, l), ∀(j, l) ∈ [m− 1]× [n]}

{π}, if the last row of π does not contain any occurrence
of the letter a.

σ∗(π) = ρ∗(π), where ρ ≡ a→ b(|) ∈ CSubV .

• If σ ≡ a→ ε(|) ∈ CDelV , then

74 P. Bottoni et al.

σ←(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π/←ρ, where ρ is the leftmost column of π, if the leftmost
column of π does contain at least one occurrence of the letter a

π, if the leftmost column of π does not contain any occurrence
of the letter a.

σ→(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π/→ρ, where ρ is the rightmost column of π, if the rightmost
column of π does contain at least one occurrence of the letter a

π, if the rightmost column of π does not contain any occurrence
of the letter a.

σ∗(π) =

⎧
⎪⎪⎨

⎪⎪⎩

{π1 c©π2 | π = π1 c©ρ c©π2, for some π1, π2 ∈ V ∗∗ and ρ is a
column of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.
In an analogous way we define:

• If σ ≡ a→ ε(−) ∈ RDelV , then

σ↑(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π/↑ρ, where ρ is the first row of π, if the first row
of π does contain at least one occurrence of the letter a

π, if the first row of π does not contain any occurrence
of the letter a.

σ↓(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π/↓ρ, where ρ is the last row of π, if the last row
of π does contain at least one occurrence of the letter a

π, if the last row of π does not contain any occurrence
of the letter a.

σ∗(π) =

⎧
⎪⎪⎨

⎪⎪⎩

{π1�π2 | π = π1�ρ�π2, for some π1, π2 ∈ V ∗∗ and ρ is a
row of π1 that contains an occurrence of the letter a}

{π}, if π does not contain any occurrence of the letter a.

For every rule σ, action α ∈ {∗,←,→, ↑, ↓}, and L ⊆ V ∗∗ , we define the α-action
of σ on L by σα(L) =

⋃

π∈L

σα(π). Given a finite set of rules M , we define the

α-action of M on the picture π and the language L by Mα(π) =
⋃

σ∈M

σα(π) and

Mα(L) =
⋃

π∈L

Mα(π), respectively. In what follows, we shall refer to the rewriting

operations defined above as evolutionary picture operations since they may be
viewed as the 2-dimensional linguistic formulations of local gene mutations. For
two disjoint subsets P �= ∅ and F of an alphabet V and a picture π over V , we
define the following two predicates which will define later two types of filters:

rcs(π; P, F) ≡ P ⊆ alph(π) ∧ F ∩ alph(π) = ∅
rcw(π; P, F) ≡ alph(π) ∩ P �= ∅ ∧ F ∩ alph(π) = ∅.

Networks of Evolutionary Picture Processors with Filtered Connections 75

The construction of these predicates is based on context conditions defined by the
two sets P (permitting contexts/symbols) and F (forbidding contexts/symbols).
Informally, both conditions require that no forbidding symbol is present in π;
furthermore the first condition requires all permitting symbols to appear in π,
while the second one requires that at least one permitting symbol appear in π.
It is plain to see that the first condition is stronger than the second one.

For every picture language L ⊆ V ∗∗ and β ∈ {s, w}, we define:

rcβ(L, P, F) = {π ∈ L | rcβ(π; P, F) = true}.
We now introduce the concept of an accepting network of evolutionary picture
processors with filtered connections (ANEPPFC for short). An ANEPPFC is a
9-tuple Γ = (V, U, G,R,N , α, β, xI , Out), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph without loops with the set of vertices

XG and the set of edges EG. Each edge is given in the form of a binary set.
G is called the underlying graph of the network.

– R : XG −→ 2CSubU ∪2RSubU ∪2CDelU ∪2RDelU is a mapping which associates
with each node the set of evolutionary rules that can be applied in that node.
Note that each node is associated only with one type of evolutionary rules,
namely for every x ∈ XG either R(x) ⊂ CSubU or R(x) ⊂ RSubU or
R(x) ⊂ CDelU or R(x) ⊂ RDelU holds.

– α : XG −→ {∗,←,→, ↑, ↓}; α(x) gives the action mode of the rules of node
x on the pictures existing in that node.

– N : EG −→ 2U × 2U is a mapping which associates with each edge e ∈ EG

the disjoint sets N (e) = (Pe, Fe).
– β : EG −→ {s, w} defines the filter type of an edge.
– xI ∈ XG is the input node and Out ⊂ XG is the set of output nodes of Γ .

We say that card(XG) is the size of Γ . A configuration of an ANEPPFC Γ as
above is a mapping C : XG −→ 2U∗

∗
f which associates a finite set of pictures

with every node of the graph. A configuration may be understood as the sets
of pictures which are present in any node at a given moment. Given a picture
π ∈ V ∗∗ , the initial configuration of Γ on π is defined by C

(π)
0 (xI) = {π} and

C
(π)
0 (x) = ∅ for all x ∈ XG − {xI}.
A configuration can change via either an evolutionary step or a communication

step. When changing via an evolutionary step, each component C(x) of the
configuration C is changed in accordance with the set of evolutionary rules Mx

associated with the node x and the way of applying these rules α(x). Formally,
we say that the configuration C′ is obtained in one evolutionary step from the
configuration C, written as C =⇒ C′, iff

C′(x) = M
α(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends one
copy of each picture it has to every node processor y connected to x, provided
it can pass the filter of the edge between x and y. It keeps no copy of these

76 P. Bottoni et al.

picture but receives all the pictures sent by any node processor z connected with
x providing that they can pass the filter of the edge between x and z.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff

C′(x) = (C(x) \ (
⋃

{x,y}∈EG

rcβ({x,y})(C(x),N ({x, y}))))

∪(
⋃

{x,y}∈EG

rcβ({x,y})(C(y),N ({x, y})))

for all x ∈ XG.
Let Γ be an ANEPPFC, the computation of Γ on an input picture π ∈

V ∗∗ is a sequence of configurations C
(π)
0 , C

(π)
1 , C

(π)
2 , . . ., where C

(π)
0 is the initial

configuration of Γ on π, C
(π)
2i =⇒ C

(π)
2i+1 and C

(π)
2i+1 � C

(π)
2i+2, ∀i ≥ 0. Note that

configurations are changed by alternative steps. By the previous definitions, each
configuration C

(π)
i is uniquely determined by C

(π)
i−1. A computation is said to be

weak (strong) accepting, if there exists a configuration in which the set of pictures
existing in at least one output node (all output nodes) is non-empty. The picture
language weakly (strongly) accepted by Γ is

Lwa(sa)(Γ) = {π ∈ V ∗∗ | the computation of Γ on π is a weak (strong)
accepting one}.

In network theory, some types of underlying graphs are common like rings,
stars, grids, etc. Networks of evolutionary strings processors, seen as language
generating or accepting devices, having underlying graphs of these special forms
have been considered in several papers, see, e.g., [12] for an early survey. On
the other hand, the ANEPPs considered in [1] are also complete. Starting from
the observation that every ANEPPFC can be immediately transformed into an
equivalent ANEPPFC with a complete underlying graph (the edges that are to
be added are associated with filters which make them useless), for the sake of
simplicity we discuss in what follows ANEPPFCs with underlying graphs having
useful edges only. Note that this is not always possible for ANEPPs.

We denote by Lwa(ANEPPFC) and Lsa(ANEPPFC) the class of picture
languages weakly and strongly accepted by ANEPPFCs, respectively.

3 Preliminary Results

The following two notions will be very useful in the sequel. If h is a one-to-
one mapping from U to W and Γ = (V, U, G,R,N , α, β, xI , Out), with G =
(XG, EG), is an ANEPPFC, then we denote by Γh the ANEPPFC Γh = (h(V),
h(U), G, h(R), h(N), α, β, xI , Out), where h(R(x)) = {h(a) → h(b)(X) |
a → b(X) ∈ R(x)}, for any x ∈ XG and h(N (e)) = (h(Pe), h(Fe)) for any
e ∈ EG.

We first establish a useful relationship between the classes Lwa(ANEPPFC)
and Lsa(ANEPPFC). As it was expected, we have:

Networks of Evolutionary Picture Processors with Filtered Connections 77

Theorem 1. Lwa(ANEPPFC) ⊆ Lsa(ANEPPFC).

Proof. Actually, we prove a bit more general result, namely that for every
ANEPPFC Γ there exists an ANEPPFC Γ ′ with one output node only and
Lwa(Γ) = Lwa(Γ ′) = Lsa(Γ ′). W.l.o.g. we assume that there is no edge con-
necting any two output nodes of Γ . We may further assume that each of these
nodes is a substitution node containing all rules a→ a(−) applied in the ∗ mode,
for all symbols a in the working alphabet of Γ . In order to get Γ ′ it suffices to
choose one of the output nodes of Γ , consider it the only output node of Γ ′,
and connect it to each output node of Γ . Each such connection is filtered by a
weak filter with the set of permitting symbols formed by all symbols of Γ and
an empty set of forbidding symbols. �

We continue the series of preliminary results with two simple examples which
lay the basis for further results.

Example 1. Let L be the set of all pictures π ∈ V ∗2 with identical rows over the
alphabet V . The language L can be formally described as

L = {π ∈ V m
2 | π(1, i) = π(2, i), i ∈ [m], m ≥ 1}.

L can be weakly accepted by the following ANEPPFC with 2 ·card(V)+3 nodes,
namely xI , xa, x′a, for every a ∈ V , xdel, one output node only, namely xO, and
the working alphabet U = V ∪ {Xa, Ya, X ′a, Y ′a | a ∈ V }. The nodes, different
than xO which has an empty set of rules, are defined as follows:

Node R α

xI {a→ Xa(−), a→ X ′a(−) | a ∈ V } ↑
xa, a ∈ V {a→ Ya(−)} ↓
x′a, a ∈ V {a→ Y ′a(−)} ↓

xdel {Xa → ε(|) | a ∈ V } ←
Further, the edges of the underlying graph and the filters associated with

them are defined in the following way:

Edge P F β

{xI , xa}, a ∈ V {Xa} U \ (V ∪ {Xa}) s
{xa, xdel}, a ∈ V {Xa, Ya} U \ (V ∪ {Xa, Ya}) s
{xdel, xI} V U \ V w

{xI , x
′
a}, a ∈ V {X ′a} U \ (V ∪ {X ′a}) s

{x′a, xO}, a ∈ V {X ′a, Y ′a} U \ {X ′a, Y ′a} s

Let us follow a computation of this network on an input picture π. In xI three
situations are possible after the first evolutionary step: (i) an occurrence of some
letter a on the first row of π is replaced by Xa, (ii) an occurrence of some letter
a on the first row of π is replaced by X ′a, and (iii) π remains unchanged. If π
is left unchanged, then it is sent to xdel, where it still remains unchanged, and
it is sent back to xI . We consider, the first non-trivial case, namely when an

78 P. Bottoni et al.

occurrence of some letter a on the first row of π is replaced by Xa. All these
pictures (remember that if the first row of π contains more than one occurrence
of a, then each such occurrence is replaced by Xa in different copies of π) are
sent to xa. After the next evolutionary step two situations regarding each of
these pictures are possible: (i) an occurrence of a on the last row of each picture,
say ρ, is replaced by Ya, or (ii) ρ remains unchanged. Note that in the second
case, ρ does not contains any a on its last row. If ρ remains unchanged, then
it is sent back to xI and it either remains forever in xI , provided that a letter
b �= a is replaced by Xb, or it is sent back and forth between xI and xa. If an
occurrence of a on the last row of ρ is replaced by Ya, then all these pictures are
sent to xdel. Note that each of these pictures contains exactly one occurrence of
Xa. In xdel one tries to delete the leftmost column of all these pictures provided
that this column contains Xa. If this process is not successful, then the pictures
will continue to go forth and back between xa and xdel. If the leftmost column
of some picture is successfully deleted in xdel, then that picture can continue the
computation in xI provided that it contains only letters from V .

We now consider the case when an occurrence of some letter a on the first row
of π is replaced by X ′a in xI . In a similar way as that described above, all these
pictures arrive in x′a, where an occurrence of a on the last row of each picture
is replaced by Y ′a and then only at most one picture can enter xO, that is the

picture
X ′a
Y ′a

. By these explanations, it follows that every input picture with a

different number of rows than two cannot be accepted. �

Clearly, the language of all pictures of size (n, 2), n ≥ 1, over a given alphabet
V , where the two columns are identical can also be accepted by an ANEPPFC.
The role of the next example is to show how two ANEPPFCs can be combined
in order to form a new ANEPPFC. To this aim, we extend the network from
Example 1 to accept the language of all pictures (of any size) having two identical
rows.

Example 2. Let L be the set of all pictures π ∈ V ∗∗ with two identical rows over
the alphabet V . The language L can be formally described as
L = {π ∈ V m

n | ∃i, j ∈ N, 1 ≤ i �= j ≤ n (π(i, k) = π(j, k)), k ∈ [m], n, m ≥ 1}.
In what follows we assume that the same alphabet V is used in Examples 1
and 2. First, we construct the ANEPPFC Γ1 = (V, U1, G1, N1, α1, β1, yI , yO),
G1 = (XG1 , EG1), of size 3 with the working alphabet U1 = V ∪ {ā | a ∈ V },
and the nodes of XG1 = {yI , ydel, yO} defined by:

Node R α

yI {b→ ε(−) | b ∈ V } ∗
ydel {b→ ε(−) | b ∈ V } ∗
yO {a→ ā(−) | a ∈ V } ∗

The edges of EG1 together with the filters associated with them are defined
by:

Networks of Evolutionary Picture Processors with Filtered Connections 79

Edge P F β1

{yI , ydel} V {ā | a ∈ V } w
{yI , yO} V {ā | a ∈ V } w
{ydel, yO} V {ā | a ∈ V } w

The informal idea of the role of this network is the following one. In the nodes
yI and ydel some nondeterministically chosen rows are repeatedly deleted from
the pictures visiting these nodes several times. Note that a copy of any picture
going out from ydel and yI may enter yO. As soon as a picture arrives in yO and
an occurrence of a symbol a from that picture is replaced by ā, the picture remains
blocked in this node, until all its symbols are replaced with their barred copies.

We now consider the ANEPPFC Γ = (V, U, G, N, α, β, xI , xO) from Example
1 and the one-to-one mapping h : U −→ {ā | a ∈ V } ∪ (U \ V) defined by
h(a) = ā, a ∈ V , and h(b) = b, b ∈ U \ V . Let Γ2 be the ANEPPFC obtained
from Γh by replacing h(U) with U1 ∪U wherever h(U) appears in the definition
of parameters of Γh. We now connect yO of Γ1 with xI of Γ2 and impose that a
picture cannot go out from yO unless all its symbols were substituted by barred
copies. Furthermore, besides all symbols in V , the set of forbidding symbols of
the filter on the edge {yO, xI} contains all symbols Xā, X ′ā, Yā, Y ′ā for a ∈ V .
We claim that the new network weakly accepts L. Indeed, the subnetwork Γ2

can start to work when it receives pictures having barred symbols only. By the
above explanations, they must be pictures with only two rows that are barred
copies of two rows randomly selected from the input picture. �

In what follows, instead of giving all the details of how two networks are merged,
as in Example 2, we simply say that the pictures processed by the network Γ1

are given as inputs to the network Γ2 suitably modified.

4 Comparison with Other Devices

In this section we compare the classes Lwa(ANEPPFC) and Lsa(ANEPPFC)
of picture languages weakly and strongly accepted by ANEPPFCs, respectively,
with L(LOC) and L(REC) denoting the classes of local and recognizable picture
languages, respectively, see [7].

Theorem 2. Lwa(ANEPPFC) \ L(REC) �= ∅.
Proof. We first claim that the following language

L = {π ∈ V m
2n | n, m ≥ 1, (π(n, i) = π(n + 1, i)), ∀i ∈ [m]}

is not recognizable, provided that card(V) ≥ 2. The proof is identical to that
for the same statement in [1]. As work [1] is not accessible yet we give it here
again. Clearly, L consists of all pictures that can be written in the form π1�π2,
where π1, π2 are pictures of the same size and the last row of π1 is equal to the
first row of π2. Assume that L is recognizable and let L = h(L′), where h is a
projection from some alphabet U to V and L′ ⊆ U∗∗ is a local language. For two

80 P. Bottoni et al.

positive integers n, m, let L(n, m) be the subset of L formed by all pictures that
can be written in the form π1�π2 with π1, π2 as above but satisfying also the
following two conditions:

- both π1 and π2 are of size (n, m);
- neither π1 nor π2 contains two consecutive identical rows.

Therefore, there exists a subset L′(n, m) of L′ such that L(n, m) = h(L′(n, m))
for all n, m. Let m be fixed; as every set L(n, m) is not empty for all values of
n, it follows that all sets L′(n, m) are nonempty as well.

Therefore, there are two pictures ρ ∈ L′(n1, m) and τ ∈ L′(n2, m), with
n1 �= n2 such that the stripe rectangle of size (2, m) consisting of the n1-th and
(n1 + 1)-th rows in ρ equals the stripe rectangle of size (2, m) consisting of the
n2-th and (n2 + 1)-th rows in τ . Consequently, both pictures obtained from ρ
and τ by interchanging their first halves with each other are in L′. However, the
projection by h of any of these pictures is not in L, a contradiction.

We now prove that the language

L = {π ∈ V m
2n | n, m ≥ 1, π(n, i) = π(n + 1, i), ∀i ∈ [m]}

is in Lwa(ANEPPFC) for any alphabet V . We give only the description of the
network processing the input pictures until they are sent to the input node of
the network from Example 1 suitably modified. The five nodes of this network
are defined as follows:

Node R α

xI {a→ X(−), a→ a′(−) | a ∈ V } ↑
x1 {a→ Y (−) | a ∈ V } ↓
x2 {X → ε(−)} ↑
x3 {Y → ε(−)} ↓
x4 {a→ a′(−) | a ∈ V } ∗

We now define the edges of this network with the filters associated with them:

Edge P F β1

{xI , x1} {X} {a′ | a ∈ V } ∪ {Y } s
{xI , x4} {a′ | a ∈ V } {X, Y } w
{x1, x2} {X, Y } {a′ | a ∈ V } s
{x2, x3} {Y } {a′ | a ∈ V } ∪ {X} s
{x3, xI} V {a′ | a ∈ V } ∪ {X, Y } w

The working mode of this network is rather simple. In the input node the first
row of the picture is marked either for deletion (if a symbol of the first row was
replaced by X) or for the checking phase. If the first row was marked for deletion,
the picture goes to the node x1 where the last row is marked for deletion. When
the picture contains X and Y it enters x2. Note that when a picture enters x2

it may contains more than one occurrence of X on its first row but only one Y
on its last row. The first and the last row are deleted in the nodes x2 and x3,
and the process resumes in the input node xI .

Networks of Evolutionary Picture Processors with Filtered Connections 81

Let us now see what happens with a picture marked for the checking phase
in the input node. This picture enters nodes x4. We connect this node with the
input node of the network in Example 1 suitable modified and impose that a
picture can enter the input node of this network only if all its symbols are primed
copies. Note that in the process of changing all symbols into their primed copies
the picture can enter xI several time. Pictures entering xI may either go back
to x3 for continuing the computational process or remain in xI forever. �

We do not know whether the inclusionL(REC) ⊂ Lwa(ANEPPFC) holds, how-
ever a large part of L(REC) is included in Lwa(ANEPPFC) as the next result
states. We recall that the complement of any local language is recognizable [7].

Theorem 3. The complement of every local language can be weakly accepted by
an ANEPPFC.

Proof. We start with an informal argument such that the formal proof can be un-
derstood easily. The argument starts with the observation that one can construct
a network that weakly accepts only a fixed picture of size (2, 2). Now, if L is a local
language over the alphabet V defined by the set F of (2, 2)-tiles, then we consider
the set F c of all (2, 2)-tiles over V that do not belong to F . This network is made
up of mainly two disjoint subnetworks: one subnetwork weakly accepts all pictures
of size (n, m), with n, m ≥ 2, in the complement of L, while the other subnetwork
weakly accepts all pictures of size (1, n) and (n, 1) with n ≥ 1. As the construction
of the latter network is pretty simple, we discuss here the former one in detail.

The rough idea of the network weakly accepting all the pictures of size (n, m),
with n, m ≥ 2, in the complement of L is the following one. It consists of a sub-
network that cuts an arbitrary subpicture of the input picture. This subpicture
is sent to every subnetwork from a set of completely disjoint networks each one
accepting exactly one picture from F c.

Formally, we assume that F c has the tiles t1, t2, . . . tn for some n ≥ 1 and

ti =
ai bi

ci di
, where ai, bi, ci, di ∈ V . The shape of this network is shown in Figure

1 while its nodes are defined as follows:

Node R α

xI ∅ ∗
x1 {a→ ε(−) | a ∈ V } ↑
x2 {a→ ε(−) | a ∈ V } ↓
y1 {a→ ε(|) | a ∈ V } ←
y2 {a→ ε(|) | a ∈ V } →

z1
i , 1 ≤ i ≤ n {ai → a11

i (−)} ↑
z2

i , 1 ≤ i ≤ n {bi → b12
i (−)} ↑

z3
i , 1 ≤ i ≤ n {ci → c21

i (−)} ↓
z4

i , 1 ≤ i ≤ n {di → d22
i (−)} ↓

z5
i , 1 ≤ i ≤ n {a11

i → ε(|)} ←
zout

i , 1 ≤ i ≤ n ∅ ∗

82 P. Bottoni et al.

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

xI

x1 x2 y1 y2

z1
1 z1

2 z1
3 z1

n

z2
1 z2

2 z2
3 z2

n

z3
1 z3

2 z3
3 z3

n

z4
1 z4

2 z4
3 z4

n

z5
1 z5

2 z5
3 z5

n

zout
1 zout

2 zout
3 zout

n

Fig. 1.

The role of the nodes defined above is as follows:

– Nodes x1 and x2 delete the first and the last row of a picture, respectively.
– Nodes y1 and y2 delete the leftmost and the rightmost row of a picture,

respectively.
– Nodes z1

i , z2
i , z3

i , z4
i , z5

i and zout
i check whether or not a picture equals the

tile ti, 1 ≤ i ≤ n.

Networks of Evolutionary Picture Processors with Filtered Connections 83

We now define the edges of this network with the filters associated with them:

Edge P F β

{xI , u}, u ∈ {x1, x2, y1, y2}∪ V {a11
i | ai ∈ V, 1 ≤ i ≤ n} w

{z1
i | 1 ≤ i ≤ n}
{z1

i , z2
i } {a11

i } {b12
i } s

{z2
i , z3

i } {a11
i , b12

i } {c21
i } s

{z3
i , z4

i } {a11
i , b12

i , c21
i } {d22

i } s
{z4

i , z5
i } {a11

i , b12
i , c21

i , d22
i } V s

{z5
i , zout

i } {b12
i , d22

i } V s

By the aforementioned explanations, it is rather easy to check that a compu-
tation of this network on a picture π leads to a non-empty node zout

i if and only
if π contains the tile ti. �

We finish this work by pointing out a natural problem that regards the equal-
ity of the classes Lwa(ANEPPFC) and Lsa(ANEPPFC). Another attractive
problem, in our view, concerns the relationships between these two classes and
the classes L(LOC) and L(REC). Last but not least, a possible direct simula-
tion of one model by another which is suggested by the results presented here
will be in our focus of interest.

References

1. Bottoni, P., Labella, A., Mitrana, V., Sempere, J.: Networks of evolutionary picture
processors (submitted)

2. Bottoni, P., Labella, A., Manea, F., Mitrana, V., Sempere, J.: Filter position in
networks of evolutionary processors does not matter: a direct proof. In: The 15th
International Meeting on DNA Computing and Molecular Programming (in press)

3. Drăgoi, C., Manea, F., Mitrana, V.: Accepting networks of evolutionary processors
with filtered connections. Journal of Universal Computer Science 13, 1598–1614
(2007)

4. Drăgoi, C., Manea, F.: On the descriptional complexity of accepting networks of
evolutionary processors with filtered connections. International Journal of Foun-
dations of Computer Science 19, 1113–1132 (2008)

5. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In:
Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40.
World Scientific, Singapore (1994)

6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: [13], pp. 215–267
7. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern

Recognition and Artificial Intelligence 6, 241–256 (1992)
8. Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)
9. Inoue, I., Takanami, I.: A survey of two-dimensional automata theory. In: Dassow,

J., Kelemen, J. (eds.) IMYCS 1988. LNCS, vol. 381, pp. 72–91. Springer, Heidelberg
(1989)

10. Margenstern, M., Mitrana, V., Jesús Pérez-J́ımenez, M.: Accepting hybrid networks
of evolutionary processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA
2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)

84 P. Bottoni et al.

11. Manea, F., Martin-Vide, C., Mitrana, V.: On the size complexity of universal ac-
cepting hybrid networks of evolutionary processors. Mathematical Structures in
Computer Science 17, 753–771 (2007)

12. Mart́ın-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and
perspectives. In: Molecular Computational Models: Unconventional Approaches,
pp. 78–114. Idea Group Publishing, Hershey (2005)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (1997)

	Networks of Evolutionary Picture Processors with Filtered Connections
	Introduction
	Basic Definitions
	Preliminary Results
	Comparison with Other Devices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

