

place a language generating device (grammar, Lindenmayer system, etc.) in any
node of an underlying graph which rewrite the strings existing in the node, then
the strings are communicated to the other nodes. Strings can be successfully
communicated if they pass some output and input �lter.

In the present paper, we modify this concept in the following way inspired
from cell biology. Each processor placed in a node is a very simple processor,
an evolutionary processor. By an evolutionary processor we mean a processor
which is able to perform very simple ooperations, namely point mutations in a
DNA sequence (insertion, deletion or substitution of a pair of nucleotides). More
generally, each node may be viewed as a cell having a genetic information encoded
in DNA sequences which may evolve by local evolutionary events, that is point
mutations. Each node is specialized just for one of these evolutionary operations.
Furthermore, the data is each node is organized in the form of multisets, each
copy being processed in parallel such that all the possible evolutions events that
can take place do actually take place.

These networks may be used as language (macroset) generating devices or as
computational ones. Here, we consider them as computational mechanisms and
show how an NP-complete problem can be solved in linear time.

It is worth mentioning here the similarity of this model to that of a P sys-
tem, a new computing model inspired by the hierarchical and modularized cell
structure recently proposed in [11].

2 Preliminaries

We start by summarizing the notions used throughout the paper. An alphabet is
a �nite and nonempty set of symbols. Any sequence of symbols from an alphabet
V is called string (word) over V . The set of all strings over V is denoted by V �

and the empty string is denoted by ". The length of a string x is denoted by jxj.
Amultiset over a setX is a mappinggM : X �! N[f1g. The numberM(x)

expresses the number of copies of x 2 X in the multiset M . When M(x) = 1,
then x appears arbitrarily many times in M . The set supp(M) is the support of
M , i.e., supp(M) = fx 2 X jM(x) > 0g. For two multisets M1 and M2 over X
we de�ne their union by (M1 [M2)(x) = M1(x) +M2(x): For other operations
on multisets the reader may consult [1].

A network of evolutionary processors (NEP for short) of size n is a construct

� = (V;N1; N2; : : : ; Nn);

where:

{ V is an alphabet,
{ for each 1 � i � n,Ni = (Mi; Ai; P Ii; F Ii; POi; FOi) is the i-th evolutionary

node processor of the network. The parameters of every processor are:
� Mi is a �nite set of evolution rules of one of the following forms only
- a! b, a; b 2 V (substitution rules),
- a! ", a 2 V (deletion rules),

622 J. Castellanos et al.

- "! a, a 2 V (insertion rules),

More clearly, the set of evolution rules of any processor contains either
substitution or deletion or insertion rules.

� Ai is a �nite set of strings over V . The set Ai is the set of initial strings
in the i-th node. Actually, in what follows, we consider that each string
appearing in a node of the net at any step has an arbitrarily large num-
ber of copies in that node, so that we shall identify multisets by their
supports.

� PIi and FIi are subsets of V representing the input �lter. This �lter, as
well as the output �lter, is de�ned by random context conditions, PIi
forms the permitting context condition and FIi forms the forbidding
context condition. A string w 2 V � can pass the input �lter of the node
processor i, if w contains each element of PIi but no element of FIi.
Note that any of the random context conditions may be empty, in this
case the corresponding context check is omitted. We write �i(w) = true,
if w can pass the input �lter of the node processor i and �i(w) = false,
otherwise.

� POi and FOi are subsets of V representing the output �lter. Analo-
gously, a string can pass the output �lter of a node processor if it satis�es
the random context conditions associated with that node. Similarly, we
write �i(w) = true, if w can pass the input �lter of the node processor i
and �i(w) = false, otherwise.

By a con�guration (state) of an NLP as above we mean an n-tuple C =
(L1; L2; : : : ; Ln), with Li � V � for all 1 � i � n. A con�guration represents
the sets of strings (remember that each string appears in an arbitrarily large
number of copies) which are present in any node at a given moment; clearly the
initial con�guration of the network is C0 = (A1; A2; : : : ; An). A con�guration can
change either by an evolutionary step or by a communicating step. When chan-
ging by a evolutionary step, each component Li of the con�guration is changed
in accordance with the evolutionary rules associated with the node i.
Formally, we say that the con�guration C1 = (L1; L2; : : : ; Ln) directly changes
for the con�guration C2 = (L0

1
; L0

2
; : : : ; L0

n
) by a evolutionary step, written as

C1 =) C2

if L0

i
is the set of strings obtained by applying the rules of Ri to the strings in

Li as follows:

{ If the same substitiution rule may replace di�erent occurrences of the same
symbol within a string, all these occurrences must be replaced within di�e-
rent copies of that string. The result is the multiset in which every string
that can be obtained appears in an arbitrarily large number of copies.

{ Unlike their common use, deletion and insertion rules are applied only to
the end of the string. Thus, a deletion rule a ! " can be applied only to
a string which ends by a, say wa, leading to the string w, and an insertion
rule " ! a applied to a string x consists of adding the symbol a to the end
of x, obtaining xa.

623Solving NP-Complete Problems with Networks of Evolutionary Processors

{ If more than one rule, no matter its type, applies to a string, all of them
must be used for di�erent copies of that string.

More precisely, since an arbitrarily large number of copies of each string
is available in every node, after a evolutionary step in each node one gets an
arbitrarily large number of copies of any string which can be obtained by using
any rule in the set of evolution rules associated with that node. By de�nition, if
Li is empty for some 1 � i � n, then L0

i is empty as well.

When changing by a communication step, each node processor sends all copies
of the strings it has which are able to pass its output �lter to all the other
node processors and receives all copies of the strings sent by any node processor
providing that they can pass its input �lter.

Formally, we say that the con�guration C1 = (L1; L2; : : : ; Ln) directly changes
for the con�guration C2 = (L0

1; L
0

2; : : : ; L
0

n) by a communication step, written as

C1 ` C2

if for every 1 � i � n,

L0

i = Li n fw 2 Li j �i(w) = trueg [
n[

j=1;j 6=i

fx 2 Lj j �j(x) = true and �i(x) = trueg:

Let � = (V;N1; N2; : : : ; Nn) be an NEP. By a computation in � we mean a
sequence of con�gurations C0; C1; C2; : : :, where C0 is the initial con�guration,
C2i =) C2i+1 and C2i+1 ` C2i+2 for all i � 0.

If the sequence is �nite, we have a �nite computation. The result of any �nite
computation is collected in a designated node called the output (master) node
of the network. If one considers the output node of the network as being the
node k, and if C0; C1; : : : ; Ct is a computation, then the set of strings existing
in the node k at the last step - the k-th component of Ct - is the result of this
computation. The time complexity of the above computation is the number of
steps, that is t.

3 Solving NP-Complete Problems

In this section we attack one problem known to be NP-complete, namely the
Bounded Post Correspondence Problem (BPCP) [2, 7] which is a variant of a
much celebrated computer science problem, the Post Correspondence Problem
(PCP) known to be unsolvable [9] in the unbounded case, and construct a NEP
for solving it. Furthermore, the proposed NEP computes all solutions.

An instance of the PCP consists of an alphabet V and two lists of strings
over V

u = (u1; u2; : : : ; un) and v = (v1; v2; : : : ; vn):

624 J. Castellanos et al.

The problem asks whether or not a sequence i1; i2; : : : ; ik of positive integers
exists, each between 1 and n, such that

ui1ui2 : : : uik = vi1vi2 : : : vik :

The problem is undecidable when no upper bound is given for k and NP-complete
when k is bounded by a constant K � n. A DNA-based solution to the bounded
PCP is proposed in [10].

Theorem 1 The bounded PCP can be solved by an NEP in size and time linearly

bounded by the product of K and the length of the longest string of the two Post

lists.

Proof. Let u = (u1; u2; : : : ; un) and v = (v1; v2; : : : ; vn) be two Post lists over
the alphabet V = fa1; a2; : : : ; amg and K � n. Let

s = K �max (fjuj j j 1 � j � ng [fjuj j j 1 � j � ng):

Consider a new alphabet

U =
m[

i=1

fa
(1)
i ; a

(2)
i ; : : : ; a

(s)
i g = fb1; b2; : : : ; bsmg:

For each x = i1i2 : : : ij 2 f1; 2; : : : ; ng�K (the set of all sequences of length at
most K formed by integers between 1 and n), we de�ne the string

u(x) = ui1ui2 : : : uij = at1at2 : : : atp(x) :

We now de�ne a one-to-one mapping � : V � �! U� such that for each sequence
x as above �(u(x)) does not contain two occurrences of the same symbol from
U . We may take

�(u(x)) = a
(1)
t1
a
(2)
t2

: : : a
(p(x))
tp(x)

:

The same construction applies to the strings in the second Post list v. We de�ne

F = f�(u(x)�(v(x)) j x 2 f1; 2; : : : ; ng�Kg = fz1; z2; : : : ; zlg

and assume that zj = bj;1bj;2 : : : bj;rj , 1 � j � l, where jzj j = rj . By the
construction of F , no letter from U appears within any string in F for more
than two times. Furthermore, if each letter of z = �(u(x))�(v(x)) appears twice
within z, then x is a solution of the given instance.

We are now ready to de�ne the NEP which computes all the solutions of the
given instance. It is a NEP of size 2sm+ 1

� = (U [�U [Û [~U [fXg[fX
(c)
d j 1 � c � n; 2 � d � jzjcg; N1; N2; : : :N2sm+1);

625Solving NP-Complete Problems with Networks of Evolutionary Processors

where

�U = f�b j b 2 Ug

(the other sets, namely Û and ~U , which form the NEP alphabet

are de�ned similarly)

Mf = f"! bfg;

Af = ;;

F If = fX
(c)
d j 2 � d � jzjc; 1 � c � l such that bf 6= bc;dg [�U [Û [~U;

PIf = FOf = POf = ;;

for all 1 � f � sm,

Msm+1 = fX ! X
(c)
2 j 1 � c � lg [fXjzjc ! bc;1 [fbd ! �bd j 1 � d � smg

[fX
(c)
d ! X

(c)
d+1 j 1 � c � l; 2 � d � jzjc � 1g;

Asm+1 = fXg;

F Ism+1 = PIsm+1 = FOsm+1 = POsm+1 = ;;

and

Msm+d+1 = fbd ! ~bd;�bd ! b̂dg;

Asm+d+1 = ;;

F Ism+d+1 = (�U n f�bdg) [fX
(c)
g j 2 � g � jzjc; 1 � c � lg;

P Ism+d+1 = FOsm+d+1 = ;;

POsm+d+1 = f~bd; b̂dg;

for all 1 � d � sm.
Here are some informal considerations about the computing mode of this

NEP. It is easy to note that in the �rst stage of a computation only the processors
1; 2; : : : ; sm+1 are active. Since the input �lter of the others contains all symbols

of the form X
(c)
g , they remain inactive until one strings from F is produced in

the node sm+ 1.
First let us explain how an arbitrary string zj = bj;1bj;2 : : : bj;rj from F can

be obtained in the node sm + 1. One starts by applying the rules X ! X
(j)
2 ,

1 � j � l, in the node sm+1. The strings X
(j)
2 , 1 � j � l, obtained in the node

sm + 1 as an e�ect of a evolutionary step are sent to all the other processors,
but for each of these strings there is only one processor which can receive it. For

instance the string X
(c)
2 is accepted only by the node processor f , 1 � f � sm,

with bf = bc;2. In the next evolutionary step, the symbol bj;2 is added to the

right hand end of the string X
(j)
2 for all 1 � j � l. Now, a communication

step is to be done. All the strings X
(j)
2 bj;2 can pass the output �lters of the

nodes processors where they were obtained but the node processor sm+1 is the
only one which can receive them. Here the lower subscripts of the symbol X are

626 J. Castellanos et al.

increased by one and the process from above is resumed in the aim of adjoining

a new letter. This process does not apply to a string X
(j)
r bj;2 : : : bj;r anymore,

if and only if r = jzj j, when X
(j)
r is replaced by bj;1 resulting in the string zj .

By these considerations, we infer that all the strings from F are produced in the
node sm+ 1 in 2s steps.

Another stage of the computation checks the number of occurrences of any
letter within any string obtained in the node sm+1, as soon the string contains
only letters in U . This is done as follows. By the way of applying the subs-
titution rules aforementioned, each occurrence of any letter is replaced by its
barred version in the node sm + 1. Let us consider a string produced by such
an evolutionary step. Such a string has only one occurrence of a symbol �bd, for
some 1 � d � sm, the other symbols being from U [Û [~U . It can pass the
input �lter of the processor sm + d + 1 only, where it remains for three steps
(two evolutionary steps and one comunication one) or forever. The string can
leave the node sm + d + 1, only if it has an ooccurrence of the symbol bd. By
replacing this occurrence with ~bd and �bd with b̂d, the string can pass the output
�lter of the node processor sm+ d+1 and goes to the node sm+1. In this way,
one checked whether or not the original string had have two occurrences of the
letter bd. After 6s steps the computation stops and the node sm + 1 has only
strings which were produced from those strings in F having two occurrences of
any letter. As we have seen, these strings encode all the solutions of the given
instance of BPCP. 2

4 Concluding Remarks

We have proposed a computational model whose underlying architecture is a
complete graph having evolutionary processors placed in its nodes. Being a bio-
inspired system, a natural question arises: How far is this model from the biolo-
gical reality and engineering possibilities? More precisely, is it possible exchange
biological material between nodes? Can the input/output �lter conditions of
the node processors be biologically implemented? What about a technological
implementation? We hope that at least some answers to these questions are
aÆrmative.

We have presented a linear algorithm based on this model which provide all
solutions of an NP-complete problem.

Further, one can go to di�erent directions of research. In our variant, the
underlying graph is the complete graph. In the theory of networks some other
types of graphs are common, e.g., rings, grids, star, etc. It appears of interest to
study the networks of evolutionary processors where the underlying graphs have
these special forms.

A natural question concerns the computational power of this model. Is it com-
putationally complete? However, our belief is that those variants of the model
which are \specialized" in solving a few classes of problems have better chances
to get implemented, at least in the near future.

627Solving NP-Complete Problems with Networks of Evolutionary Processors

References

1. J. P. Banâtre, A. Coutant, D. Le Metayer, A parallel machine for multiset transfor-
mation and its programming style, Future Generation Computer Systems, 4 (1988),
133{144.

2. R. Constable, H. Hunt, S. Sahni, On the computational complexity of scheme equi-
valence, Technical Report No. 74-201, Dept. of Computer Science, Cornell Univer-
sity, Ithaca, NY, 1974.

3. E. Csuhaj - Varju, J. Dassow, J. Kelemen, Gh. Paun - Grammar Systems, Gordon
and Breach, 1993.

4. E. Csuhaj-Varj�u, Networks of parallel language processors. In New Trends in For-

mal Languages (Gh. P�aun, A. Salomaa, eds.), LNCS 1218, Springer Verlag, 1997,
299{318

5. L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In
Arti�cial Intelligence and Information-Control Systems of Robots '94 (I. Plander,
ed.), World Sci. Publ., Singapore, 1994, 31{40.

6. S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National Conf. on

AI, William Kaufman, Los Altos, 1983, 109{113.
7. M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of

NP-completeness, Freeman, San Francisco, CA, 1979.
8. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
9. J. Hopcroft, J. Ulmann, Formal Languages and Their Relation to Automata,

Addison-Wesley, Reading, MA, 1969.
10. L. Kari, G. Gloor, S. Yu, Using DNA to solve the Bounded Correspondence Pro-

blem, Theoret. Comput. Sci., 231 (2000), 193{203.
11. Gh. P�aun, Computing with membranes, J. Comput. Syst. Sci. 61(2000). (see also

TUCS Research Report No. 208, November 1998, http://www.tucs.�.)
12. Gh. P�aun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Para-

digms, Springer-Verlag, Berlin, 1998.

628 J. Castellanos et al.

	1 Introduction
	2 Preliminaries
	3 Solving NP-Complete Problems
	4 Concluding Remarks
	References

