
IMPLEMENTING WATSON-CRICK FINITE AUTOMATA

IN JAVA
*

Marcelino Campos
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Camino de Vera s/n 46022 Valencia (Spain)

mcampos@dsic.upv.es

Tomás A. Pérez
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Camino de Vera s/n 46022 Valencia (Spain)

taperez@dsic.upv.es

José M. Sempere
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Camino de Vera s/n 46022 Valencia (Spain)

jsempere@dsic.upv.es

ABSTRACT

Watson-Crick finite automata (WKFA) were first proposed by Freund et al. in 1997 inspired by formal language theory,

finite states machines and some ingredients from DNA computing such as working with molecules as double stranded

complementary strings. Here, we propose an implementation of WKFA in Java. The purpose of this wok is to show a

complete architecture of methods, classes and interfaces which fully implement a simulator of WKFA with the exception

of user interfaces.

KEYWORDS

Computation models, DNA computing, simulators.

1. INTRODUCTION, BASIC CONCEPTS AND NOTATION

Watson-Crick finite automata (WKFA) (Freund et al., 1997) is a good example of how DNA biological

properties can be adapted to propose computation models in the framework of DNA computing. The WKFA

model works with double strings inspired by double-stranded molecules with a complementary relation

between symbols (here, inspired by classical complementary relation between nucleotides A-T and C-G).

In the sequel, we will introduce some basic concepts from formal language theory according to Hopcroft

and Ullman ,1979 and Rozenberg and Salomaa, 1997 and from DNA computing according to P un et al.

1998.

An alphabet is a finite nonempty set of elements named symbols. A string defined over is a finite

ordered sequence of symbols from . The infinite set of all the strings defined over will be denoted by *.

Given a string x ! * we will denote its length by |x|. The empty string will be denoted by " and + will

denote * - {"}. Given a string x we will denote by xr the reversal string of x. A language L defined over is

a set of strings from .

* Work partially supported by the Ministerio de Ciencia y Tecnología under project TIC2003-09319-C03-02.

ISBN: 972-8924-09-7 © 2006 IADIS

334

A grammar is a construct G = (N, , P, S) where N and are the alphabets of auxiliary and terminal

symbols with N # = $, S ! N is the axiom of the grammar and P is a finite set of productions in the form

% & '. The language of the grammar is denoted by L(G) and is the set of terminal strings that can be

obtained from S by applying symbol substitutions according to P.

We will say that a grammar G = (N, , P, S) is right linear (regular) if every production in P is in the

form A & uB or A & w with A,B ! N and u,w ! *. The class of languages generated by right linear

grammars coincides with the class of regular languages and will be denoted by REG. We will say that a

grammar G = (N, , P, S) is linear if every production in P is in the form A & uBv or A & w with A,B ! N

and u,v,w ! *. The class of languages generated by linear grammars will be denoted by LIN. We will say

that a grammar G = (N, , P, S) is even linear if every production in P is in the form A & uBv or A & w

with A,B ! N, u,v,w ! * and |u| = |v|. The class of languages generated by even linear grammars will be

denoted by ELIN. A well known result from formal language theory is the inclusion REG (ELIN (LIN.

A homomorphism h is defined as a mapping h: &)* where and) are alphabets. We can extend the

definition of homomorphism over strings as h(") = " and h(ax) = h(a) h(x) with a ! and x ! *. Finally,

the homomorphism over a language L * * is defined as h(L) = { h(x) : x ! L }.

Given an alphabet = {a1, …, an}, we will use the symmetric (and injective) relation of complementarity

+ * , . For any string x ! *, we will denote by +(x) the string obtained by substituting the symbol a in x

by the symbol b such that (a, b) ! + (remember that + is injective) with +(") = ".

Given an alphabet , a sticker over will be the pair (x, y) such that x = x1 v x2, y = y1 w y2 with x, y ! *

and +(v) = w. The sticker (x, y) will be denoted by --
.

/
00
1

2
y

x
. A sticker --

.

/
00
1

2
y

x
 will be a complete and

complementary molecule if |x| = |y| and +(x) = y. A complementary and complete molecule --
.

/
00
1

2
y

x
 will be

denoted as 3
4

5
6
7

8
y

x
. Obviously, any sticker --

.

/
00
1

2
y

x
 or molecule 3

4

5
6
7

8
y

x
 can be represented by x#yr where # 9 . So,

inspired by DNA structure, x#yr represents the upper and lower nucleotide strings within the same direction

3’–5’ (or 5’-3’).

Formally, an arbitrary WK finite automata is defined by the tuple M = (V, +, Q, s0, F, :), where Q and V

are disjoint alphabets (states and symbols), s0 is the initial state, F * Q is a set of final states and

::Q, --
.

/
00
1

2
*

*

V

V
& P(Q) (which denotes the power set of Q, that is the set of all possible subsets of Q).

The language of complete and complementary molecules accepted by M will be denoted by the set

Lm(M), while the upper strand language accepted by M will be denoted by Lu(M) and defined as the set of

strings x such that M, after analyzing the molecule 3
4

5
6
7

8
y

x
 enters into a final state.

Two basic representation results were introduced by Sempere in 2004 as follows

Theorem 1. Let M = (V, +, Q, s0, F, :) be an arbitrary WK finite automata. Then there exists a linear

language L1 and an even linear language L2 such that Lm(M) = L1 # L2.

Corollary 1. Let M = (V, +, Q, s0, F, :) be an arbitrary WK finite automata. Then Lu(M) can be expressed

as g(h-1(L1 # L2) # R) with L1 being a linear language, L2 an even linear language, R a regular language and

g and h homomorphisms.

IADIS International Conference Applied Computing 2006

335

2. AN IMPLEMENTATION IN JAVA

In this section we propose an implementation of WKFA in Java. In order to know more about Java we

recommend the book by Horstmann and Cornell, 2000.

We have designed a set of interfaces and classes in Java which defines the structures and components

needed to develop a WKFA simulator. At the first sight, these software entities are predefined by the

structural and operational characteristics of WKFA. So, for example we have classes which are associated to

the input tape, to the finite automata, to the complementarity relation, to the instantaneous descriptions of any

computation, etc. Some objects of these classes need to interact with others in order to obtain the

computation trees. In addition, we need user interfaces to handle the computation trees, the acceptance paths

inside the computation trees, etc.

We will describe some classes and methods in this section. Other classes and methods are specified in the

appendix at the end of this work.

First, the class Tape represents the input data for the automata. It is composed of two equal length strings

(strands) which are related by a complementarity relation. Anyway, the class Tape does not assume any

specific complementarity relation. Its definition in Java is described as follows:

import java.io.*;

public class Tape implements Serializable{

 //Attributes

 private final String upperStrand;

 private final String lowerStrand;

 //Constructor

 public Tape(String upperStrand,String lowerStrand)

 throws NotValidTapeException{}

 //Methods

 public boolean checkWithComplementarityRelation(

 ComplementarityRelation rel){}

 public int length(){}

 public char getUpperChar(int i){}

 public char getLowerChar(int i){}

 public String getUpperStrand(){}

 public String getLowerStrand(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

We have omitted the void code for methods and constructors. In the last code, the constructor sends the

exception NotValidTapeException when the two strings (strands) have different lengths. The last three

methods are referred to Object. So, for example, the method public boolean equals(Object obj) returns true

when the parameter object is from the class Tape and has identical attributes. These methods have been

rewritten for other classes which have identical requirements. The class Tape uses the class

ComplementarityRelation in the method public boolean checkWithComplementarityRelation(

ComplementarityRelation rel){} which checks the validity with respect to a given complementarity

relation.

Any complementarity relation is defined by the classes ComplementarityRelation and

PairOfComplementarySymbols. The last class defines the complementarity relation between two specific

symbols and its code is showed in the appendix of this work. The class ComplementarityRelation integrates

the set of specific pairs which have been defined by the class PairOfComplementarySymbols in order to

define a complementarity relation. We show its code as follows

ISBN: 972-8924-09-7 © 2006 IADIS

336

import java.io.*;

import java.util.*;

public class ComplementarityRelation implements Serializable{

 //Attributes

 private Set groupOfPairsOfComplementarySymbols = new HashSet();

 //Constructor

 public ComplementarityRelation(){}

 public ComplementarityRelation(String fileName)

 throws IOException,BadDefinedComplementarityRelationException {}

 public ComplementarityRelation(File file)

 throws IOException,BadDefinedComplementarityRelationException {}

 public ComplementarityRelation(InputStream is)

 throws IOException,BadDefinedComplementarityRelationException {}

 //Methods

 public Set getGroupOfPairsOfComplementarySymbols(){}

 public void addPairOfComplementarySymbols(PairOfComplementarySymbols pair)

 throws BadDefinedComplementarityRelationException{}

 public void addComplementarityRelation(ComplementarityRelation relation)

 throws BadDefinedComplementarityRelationException{}

 public void save(String fileName) throws IOException {}

 public void save(File file) throws IOException {}

 public void save(OutputStream os) throws IOException {}

 public boolean contains(PairOfComplementarySymbols pair){}

 public boolean contains(char s1,char s2){}

 public boolean contains(ComplementarityRelation relation){}

 public Set getAlphabet(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

public class BadDefinedComplementarityRelationException

 extends Exception {}

Once we have defined WK finite automata, we can handle them by using the following interface. Observe

that this strategy separates the construction phase from the running phase.

import java.io.*;

import java.util.*;

public interface InterfaceAutomatonWK extends Serializable{

 Set getAlphabet();

 Set getStates();

 Set getFinalStates();

 Set getTransitions();

 Integer getInitialState();

 ComplementarityRelation getComplementarityRelation();

 void setComplementarityRelation(ComplementarityRelation complementarityRelation);

 void save(String fileName) throws IOException;

 void save(File file) throws IOException;

 void save(OutputStream os) throws IOException;

 Set ImmediateTransitions(Tape tape, SnapshotWK snapshot);

 SnapshotWK exeTransition(Tape tape,SnapshotWK snapshot,Transition transition);

 SnapshotWK[] nextSnapshots(Tape tape,SnapshotWK snapshot);

 boolean isFinal(SnapshotWK snapshot,Tape tape);

}

IADIS International Conference Applied Computing 2006

337

The last interface allows the interaction with any object that represents a correctly defined WKFA

independently of its implementation. We have assumed the usual simplification of representing every state

with an integer. We can observe the existence of the "get" methods which allow the recovery of a copy of the

main elements of the automata in a normalized format. In addition, two more methods are available to save

the automata into a file, so we can use it at any time. This implies that every implementation can read this file

to rebuild the automata. This feature will be used in different constructors. Furthermore, they can be used to

make an input stream persistent. The last three methods allow the interaction between an input tape with the

automata through the use of instantaneous descriptions (snapshots). So, we can select the admissible

transitions and we can execute all of them or everyone in an isolated mode.

The instantaneous descriptions are defined by the class SnapshotWK which is showed in the appendix.

The objects of this class are pure containers of the elements that define an instantaneous description of a

WKFA with an input tape. We have two elements which are defined by two pointers: one of them is linked to

the upper strand and the other is linked to the lower strand. They put a mark on the positions of the tape

heads and the state of the finite control. In addition, they contain a logical marker, potentialAcceptance,

which establishes if a final state can be reached from the instantaneous description.

The WKFA have been implemented with the class AutomatonWK which is showed again in the

appendix.

We have defined BadDefinedAutomatonWKException which is an exception that actives itself in the

case that the construction or rebuilding of a given WKFA shows any discrepancy between its elements or in

its format. In addition, it shows the reasons why the WKFA cannot be correctly constructed. This exception

is defined as follows

 public class BadDefinedAutomatonWKException extends Exception {}

We have different methods to simulate the dynamics of a given WKFA with an input tape. The method

public Set ImmediateTransitions (Tape tape, SnapshotWK snapshot) allows to obtain the set of

transitions of the automata which can be applied to an instantaneous description of an input tape. Obviously,

this set can be empty. The method public SnapshotWK exeTransition(Tape tape, SnapshotWK snapshot,

Transition transition) allows to execute a transition over an input tape for a given instantaneous description.

It returns the next instantaneous description if the transition can be applied. Otherwise, it returns null. The

complete set of the next instantaneous description to a given one can be obtained with the method

SnapshotWK[] nextSnapshots(Tape tape, SnapshotWK snapshot). If this set is empty it returns null.

The transitions of the WKFA are objects of the class Transition which is defined in the appendix. Any

object transition specifies a basic set which is related to the transitions of the automata. It is constructed by

enumerating the starting state, the segment of the upper strand, the segment of the lower strand and the set of

arrival states.

Given a WKFA and a (compatible) input tape, the main task of the simulator will consist on obtaining the

corresponding computation tree in order to go across its nodes. The basic element to build the computation

tree is showed in the class Node related to the nodes of the tree. This class is showed in the appendix.

The nodes of the tree are linked in a double way, so we can go from the root to the leaves and in an

inverse way. Observe that any object of the class Node contains all the references needed to connect it to the

tree. This is the significant information of every node inside the computation tree. So, we have linked to

every node the instantaneous description together with the transition which is needed to obtain it. In addition,

every node has a boolean marker, potentialAcceptance, that establishes if we can arrive from this node to an

acceptation leaf of the tree.

Once we have constructed a computation tree, we can handle it with the interface

InterfaceComputationTreeWK which is defined as follows

import java.io.*;

public interface InterfaceComputationTreeWK extends Serializable{

 //General methods

 void setAcceptationPaths(InterfaceAcceptationPath acceptationPaths[]);

 InterfaceAutomatonWK getAutomatonWK();

ISBN: 972-8924-09-7 © 2006 IADIS

338

 ComplementarityRelation getComplementarityRelation();

 Tape getTape();

 boolean checkAcceptance();

 InterfaceAcceptationPath[] getAcceptationPaths();

 void saveTree(String fileName) throws IOException;

 void saveTree(File file) throws IOException;

 void saveTree(OutputStream os) throws IOException;

 //travel methods

 Node getRoot();

 Level getRootLevel();

 Node getNode();

 void setNode(Node node);

 SnapshotWK getSnapshotWK();

 SnapshotWK getSnapshotWK(Node node);

 Transition getTransition();

 boolean exeTransition(Transition t);

 Node exeTransition(Node node,Transition t);

 Node[] getNextNodes();

 Node[] getNextNodes(Node node);

 Node getPreviousNode();

 Node getPreviousNode(Node node);

 int getMinimumDepth();

 int getMaximumDepth();

 Level getDepthLevel(int depth);

 Level getNextLevel(Level level);

 Level getNextLevel();

 int getDepth();

 int getDepth(Node node);

 Node[] getLeaves();

 boolean isLeaf();

 boolean isLeaf(Node node);

}

The first methods of the previous code allow to obtain a copy of the initial significant data: the WKFA,

the complementarity relation and the input tape. In addition, it is possible to know if the acceptation has been

produced by using the method Boolean checkAcceptance(). In affirmative case, we can obtain all the

acceptation paths by using the method InterfaceAcceptationPath[] getAcceptationPaths(). The

computation tree can be saved into a file in order to recover it at any moment.

We use the methods void saveTree(String fileName) throws IOException and void saveTree(File file)

throws IOException to make so. We can process the computation tree by using an InputStream with the

method void saveTree(OutputStream os) throws IOException.

The other methods allow to go across the computation tree with different alternatives. Any object of this

class has an internal state with the corresponding node (or level) in curse. We can make some operations over

these objects, so we can obtain them with the method Node getNode(), and put them, if needed, with the

method void setNode(Node node). Its instantaneous description can be directly obtained with the method

SnapshotWK getSnapshotWK() while we can use the method SnapshotWK getSnapshotWK(Node node)

if we wish to obtain the instantaneous description of any other node inside the tree. The following nodes of

the current node of the internal state can be obtained with the method Node[] getNextNodes() while the

following nodes of any other node can be obtained with the method Node[] getNextNodes(Node node).

This working mode is similar to the one defined by the methods Node getPreviousNode() and Node

getPreviousNode(Node node). The method Boolean exeTransition(Transition t) allows to execute the

transition of the argument over the node of the internal state. This method, if successful, returns true and

changes the node by the resulting node obtained from the transition application. If the specified transition

cannot be applied then no movement is held and the method returns false. In addition, we can use the method

IADIS International Conference Applied Computing 2006

339

Node exeTransition(Node node, Transition t) which attempts to apply the transition t over the node. If it is

possible to execute the last transition then the method returns an arrival node, otherwise it returns null. The

last method does not modify the internal state of the object.

We can work with the levels of the computation tree with the methods Level getDepthLevel(int depth),

Level getNextLevel(Level level), Level getNextLevel() and getRootLevel() which returns the following

level of the internal state level or the following level of the internal state if it is the first time that is used. The

depths of the nodes can be obtained with the methods int getDepth() and int getDepth(Node node). We can

directly obtain the leaves of the tree by using the method Node[] getLeaves().

The class ComputationTreeWK implements the last interface and must take into account the rebuilding

static methods. It returns an object of the class InterfaceComputationTreeWK which is useful to rebuild

the previously saved computation trees.

The class Level which has been previously used is a pure container. It is showed in the appendix.

The interface InterfaceAcceptationPath defines an accepting path which is obtained from the

computation tree. Its specification is showed in the appendix and we will not make any comment on its

methods given that their names are self-explanatory.

Finally, the simulator is defined by the following interface which provides the full functionality of the

WKFA

public interface InterfaceSimulator{

 void setTape(Tape tape);

 Tape getTape();

 void setAutomatonWk(InterfaceAutomatonWK aut);

 InterfaceAutomatonWK getAutomatonWK();

 InterfaceComputationTreeWK getComputationTreeWK();

 InterfaceAcceptationPath[] getAcceptationPaths();

 boolean checkAcceptation();

 void completeTree();

}

The main function of the simulator constructs the computation tree. We show this part as a pseudocode

AcceptationPaths = empty

LivesNodesList = ComputationTree.root

WHILE LivesNodesList != empty

 Node = getFirst(LivesNodesList)

 IF Nodo is not an acceptance node

 NextNodes = expand(Node)

 FOR ALL Next in NextNodes

 Next.previous = Node

 insert(LivesNodesList,Next)

 END FOR ALL

 ELSE

 setAcceptance(Node,true)

 Path = makeReoute(ComputationTree.root,Node)

 insert(AcceptationPaths,Path)

 END IF

END WHILE

3. CONCLUSIONS AND FUTURE WORKS

We have proposed an implementation of WKFA in Java. The internal functions of this automata model and

the abilities to handle it have been exposed. Anyway, this is just the first part of a major project involved with

ISBN: 972-8924-09-7 © 2006 IADIS

340

this class of automata. The aspects in which we are working, related to this topic, can be summarized in the

following two lines:

; We are developing the user interfaces needed to handle the WKFA model in a friendly manner.

 New variants of WKFA will be implemented. We can mention, among others, reversal WKFA,

WK finite transducers, etc.

Finally, we would like to point out that this tool will be useful in the near future to analyze how these

models are able to solve some problems related to biomolecular processing (i.e. DNA/RNA/protein

prediction and classification).

REFERENCES

Freund, R. et al., 1999. Watson-Crick Finite Automata. Proceedings of DNA Based Computers III DIMACS Workshop,

Pennsylvania, USA, pp 297-327.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory, Languages and Computation. Addison Wesley

Publishing Co., Massachusetts, USA.

Horstmann, C.S. and Cornell, G. 2000. Core Java Vols. 1 and 2. Prentice Hall, Palo Alto, USA.

P un, Gh. et al. 1998. DNA Computing. New computing paradigms. Springer., Berlin, Germany.

Rozenberg, G and Salomaa, A. (eds.) 1997. Handbook of Formal Languages Vol. 1. Springer, Berlin, Germany.

Sempere, J.M. 2004. A Representation Theorem for Languages accepted by Watson-Crick Finite Automata. Bulletin of

the EATCS No. 83, pp. 187-191.

APPENDIX: METHODS AND CLASSES CODE

import java.io.*;

public class PairOfComplementarySymbols implements Serializable{

 //Attributes

 private final char symbol1;

 private final char symbol2;

 //Constructor

 public PairOfComplementarySymbols(char symbol1,char symbol2){}

 //Methods

 public char[] getSymbols(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

}

import java.io.*;

public class SnapshotWK implements Serializable{

 //Attributes

 public final int upperStrandPointer;

 public final int lowerStrandPointer;

 public final Integer state;

 private boolean potentialAcceptance;

 //Constructor

IADIS International Conference Applied Computing 2006

341

 public SnapshotWK(int upperStrandPointer,int lowerStrandPointer, Integer state){}

 //Methods

 public void setPotentialAcceptance(){}

 public boolean getPotentialAcceptance(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

import java.util.*;

import java.io.*;

public class AutomatonWK implements InterfaceAutomatonWK{

 //Attributes

 private final Set alphabet;

 private final Set states;

 private final Set finalStates;

 private final Set transitions;

 private ComplementarityRelation complementarityRelation;

 private final Integer initialState;

 //Constructors

 public AutomatonWK(Set alphabet,Set states,Set finalStates,Integer initialState,Set transitions,

 ComplementarityRelation complementarityRelation){}

 public AutomatonWK(Set alphabet,Set states,Set finalStates,Integer initialState,Set transitions){}

 public AutomatonWK(InterfaceAutomatonWK aut){}

 //Methods

 public static InterfaceAutomatonWK rebuilt(String fileName)

 throws IOException,BadDefinedAutomatonWKException {}

 public static InterfaceAutomatonWK rebuilt(File file)

 throws IOException,BadDefinedAutomatonWKException {}

 public static InterfaceAutomatonWK rebuilt(InputStream is)

 throws IOException,BadDefinedAutomatonWKException {}

 public Set getAlphabet(){}

 public Set getStates(){}

 public Set getFinalStates(){}

 public Set getTransitions(){}

 public Integer getInitialState(){}

 public ComplementarityRelation getComplementarityRelation(){}

 public void setComplementarityRelation(ComplementarityRelation complementarityRelation){}

 public void save(String fileName) throws IOException {}

 public void save(File file) throws IOException {}

 public void save(OutputStream os) throws IOException {}

 public Set ImmediateTransitions(Tape tape,SnapshotWK snapshot){}

 public SnapshotWK exeTransition(Tape tape,SnapshotWK snapshot,Transition transition){}

 public SnapshotWK[] nextSnapshots(Tape tape,SnapshotWK snapshot){}

 public boolean isFinal(SnapshotWK snapshot,Tape tape){}

 public int hashCode(){}

 public String toString(){}

}

ISBN: 972-8924-09-7 © 2006 IADIS

342

import java.io.*;

import java.util.*;

public class Transition implements Serializable{

 //Attributes

 public final Integer startState;

 public final String upperStrand;

 public final String lowerStrand;

 public final Integer arrivalState;

 //Constructor

 public Transition(Integer startState,String upperStrand,String lowerStrand,Integer arrivalState){}

 //Methods

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

import java.io.*;

import java.util.*;

public class Node implements Serializable{

 //Attributes

 private final SnapshotWK snapshot;

 private final Node previousNode;

 private Set nextNodes = new HashSet();

 private boolean potentialAcceptance;

 public final Transition transition;

 private Level level;

 //Constructor

 public Node(SnapshotWK snapshot,Node previousNode,Transition transition){}

 //Methods

 public boolean getPotentialAcceptance(){}

 public void setPotentialAcceptance(){}

 public void setLevel(Level level){}

 public Level getLevel(){}

 public Node getPreviousNode(){}

 public SnapshotWK getSnapshotWK(){}

 public void addNextNode(Node node){}

 public void addNextNodes(Set nodes){}

 public Set getNextNodes(){}

 public int getDepth(){}

 public int calculateDepth(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

IADIS International Conference Applied Computing 2006

343

import java.io.*;

import java.util.*;

public class Level implements Serializable{

 //Attributes

 private final Node[] nodes;

 public final boolean acceptance;

 public final int depth;

 private Level nextLevel;

 //Constructor

 public Level(Node[] nodes,int depth){}

 //Methods

 public void setNextLevel(Level level){}

 public Level getNextLevel(){}

 public Node[] getNodes(){}

 public Node[] getAcceptationNodes(){}

 public boolean equals(Object obj){}

 public int hashCode(){}

 public String toString(){}

}

import java.io.*;

public interface InterfaceAcceptationPath extends Serializable{

 InterfaceAutomatonWK getAutomatonWK();

 ComplementarityRelation getComplementarityRelation();

 Tape getTape();

 void save(String fileName) throws IOException;

 void save(File file) throws IOException;

 void save(InputStream is) throws IOException;

 void initPath();

 Node getRoot();

 Node getLeaf();

 Node getNextNode();

 Node getNode();

 Transition getTransition();

 Node getPreviousNode();

 SnapshotWK getSnapshotWK();

 SnapshotWK getSnapshotWK(Node node);

 int getMaximumDepth();

 int getDepth();

 int getDepth(Node node);

}

ISBN: 972-8924-09-7 © 2006 IADIS

344

