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1 Introduction

In this paper, we will present two methods for transferring learnability results
from one language class to another by simple preprocessing. We mainly concen-
trate on the paradigm “learning in the limit from positive data”. It is not hard to
see that similar techniques can be used to develop efficient learning algorithms
in other paradigms as well. In the case of query learning, this has been done
(within the framework of matrix grammars, see below) in [9]. We will detail
such extensions at the end.

Here, we will focus on the following version of the learning model “identifi-
cation in the limit” proposed by Gold [18]:

– An inference machine (a “learner”) IM is given the task to infer a language
from a certain fixed language class F for which a description formalism (in
our case, a grammar formalism) is also fixed.

– To the inference machine IM, a language L ∈ F is presented by giving all the
elements of L to IM one by one (maybe, with repetitions), i.e., L = {wi | i ≥
0 }, and wi is given to IM at time step i.

– After having received wi, IM responds with a hypothesis grammar Gi. Of
course, we can see Gi as the result of computing a recursive (i + 1)-ary
function fi:

Gi = fi(w0, . . . , wi). (1)
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The inference machine IM is called a learner for F if
1. the process described above always converges in the discrete space of F-

grammars, i.e., for all presentations {wi | i ≥ 0} ∈ F , the corresponding
grammar sequenceG0, G1, G2, . . . converges to a limit grammarG, which
means that there is an i0 such that for all i ≥ i0 we find G = Gi0 = Gi;

2. the limit grammar G is independent of the presentation of the language L
and, moreover, L ⊆ L(G).

Note that there are a lot of language families known to be identifiable in the
limit from positive data. According to Gregor [19], the most prominent examples
of identifiable regular language families are:

– k-testable languages [15,17] (see below),
– k-reversible languages [4] and
– terminal distinguishable regular languages [30,31].

Generalizations of these language classes are discussed in [1,10,11,21,32]. Further
identifiable language families, especially also non-regular ones, can be found as
references in the quoted papers.

All these language classes can be learned efficiently, i.e., the time complexity
for the computation of the hypothesis function(s) fi in Eq. (1) is only polynomial
in the size of its input, which is the total length of the input sample words up
to step i.

2 Formal Language Definitions

Notations: Σk is the set of all words of length k over the alphabet Σ, Σ<k =⋃k−1
j=0 Σ

j , and Σ∗ =
⋃
j≥0Σ

j . Moreover, |w| denotes the length of w ∈ Σ∗, i.e.,
|w| = k iff w ∈ Σk. λ denotes the empty word, which is the only word of length 0.

Definition 1. A linear grammar is a construct G = (N,Σ, P, S), where N is
the finite set of nonterminals, S ∈ N is the start symbol, and P is a set of linear
rules, which are rules of the form A → vBw and A → w, where A,B ∈ N and
v, w ∈ Σ∗. G defines a derivation relation ⇒ via x ⇒ y iff ∃α, β ∈ Σ∗, A →
u ∈ P : x = αAβ and y = αuβ. G generates the language L(G) = {S ∗⇒ w |
w ∈ Σ∗}, where ∗⇒ is the reflexive transitive closure of ⇒. A language is linear
if there exists a linear grammar generating this language.

Of special interest for our purpose are the so-called even linear languages
(introduced by Amar and Putzolu in [2]) characterized by even linear grammars,
where the rules of the form A → vBw obey |v| = |w|.

Furthermore, the regular languages are characterized via right-linear gram-
mars, which are linear grammars where the rules of the form A → vBw obey
w = λ.

Let REG denote the family of regular languages, ELL the family of even
linear languages and LIN the family of linear languages. REG ( ELL ( LIN is
well-known [2,33].
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In order to provide a simple running example, we define:

Definition 2. A language L is k-testable (in the strict sense), or k-TLSS for
short, iff L = IkΣ

∗ ∩Σ∗Fk \Σ∗TkΣ∗, where Ik, Fk ⊆ Σ<k and Tk ⊆ Σk.

3 Permutation Families for Learning from Positive Data

In order to present our results, we need some further notions.
Let ψn : {1, . . . , n} → {1, . . . , n} be a permutation, i.e., a bijective mapping. A
collection Ψ = (ψn | n ≥ 1) of permutations is called a family of permutations.
Ψ is called uniformly polynomial-time computable if there is an algorithm Af
realizing the partial function f : N×N → N with f(n,m) = ψn(m) in polynomial
time and another algorithm Ag realizing the partial function g : N × N → N

with g(n,m) = ψ−1
n (m) in polynomial time. To every family of permutations

Ψ = (ψn | n ≥ 1), there corresponds a family of inverse permutations Ψ−1 =
(ψ−1
n | n ≥ 1).

Example 3. Consider

ψn(m) =
{

2m− 1 , if m ≤ (n+ 1)/2
2(n−m+ 1), if m > (n+ 1)/2

Both ψn(m) and its inverse are easily seen to be polynomial-time computable.
Hence Ψ = (ψn | n ≥ 1) is a polynomial-time computable family of permutations.

It is easy to construct further uniformly polynomial-time computable families
of permutations from known ones. This can be done, e.g., by the following two
operations (here, let Ψ = (ψn) and Φ = (φn) be uniformly polynomial-time
computable families of permutations):

piecewise mixture Let n0 be fixed. Define Ξ = (ξn) by ξn = ψn, if n < n0,
and ξn = φn otherwise.

permutationwise composition Define Ξ = (ξn) by ξn = ψn◦φn with ξn(x) =
ψn(φn(x)).

For example, the permutationwise composition of Ψ as defined in Example 3
with itself yields the family Ξ = (ξn), where, e.g., ξ11 can be described by the
following table:

x = 1 2 3 4 5 6 7 8 9 10 11
ψ11(x) = 1 3 5 7 9 11 10 8 6 4 2
ξ11(x) = 1 5 9 10 6 2 4 8 11 7 3

Now, let us fix an alphabet Σ and a family of permutations Ψ = (ψn | n ≥ 1).
In order to avoid further awkward notations, let us denote by Ψ(w), where
w = a1 . . . an ∈ Σn, the word Ψ(w) = aψn(1) . . . aψn(n) . We extend this notation
further to language by setting, for L ⊆ Σ∗, Ψ(L) = {Ψ(w) | w ∈ L} and to
language families (obviously not necessarily restricted to a specific alphabet Σ
anymore) by defining Ψ(L) = {Ψ(L) | L ∈ L}.
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The following theorem is easily shown:

Theorem 4. If L is a language family for which a polynomial-time learning
algorithm in the limit from positive data is known, then Ψ(L) can be learned
in polynomial-time in the limit from positive data as well, if Ψ is a uniformly
polynomial-time computable family of permutations.

Proof. Let AL be the learning algorithm for language family L. The learning al-
gorithm for Ψ(L) uses AL as a subroutine in the sense that it translates its input
sequence w1, w2, w3, . . . into an input sequence Ψ−1(w1), Ψ−1(w2), Ψ−1(w3), . . .
of algorithm AL. To this input sequence, AL responds with a sequence of gram-
mars G1, G2, G3, . . . generating the languages L1, L2, L3, . . . . Now, the intended
learning algorithm just interprets G1, G2, G3, . . . as representing languages

Ψ(L1), Ψ(L2), Ψ(L3), . . . .

The correctness and efficiency of the described algorithm trivially carries over
from AL, since Ψ was assumed to be a uniformly polynomial-time computable
family of permutations. ut

Of course, it is a bit abstract and unnatural to consider a grammar G of L
to represent “suddenly” a language Ψ−1(L) as done in the preceding proof. We
will show natural examples of such an interpretation in the following by making
use of the concept of control sets.

4 Control Sets for Learning from Positive Data

Let G denote some grammar.1 A word w (over G’s terminal alphabet) belongs to
the language L(G) generated by G iff there is a sequence of rules r1 . . . rm whose
sequential application, starting from an axiom of G, yields w. In other words, w
is somehow described by a word (called control word or associate word) over the
rule set P of G. If G is ambiguous, this description is not unique. On the other
hand, one could consider the sublanguage L(G,R) of L(G) consisting of those
(terminal) words derivable through G which have control words in R ⊆ P ∗. Here,
R is called control set.2 If G is some grammar family and L is some language
family, then let

CONTROL(G,L) = {L(G,R) | G ∈ G, L ∈ L} .

Let us fix, for the moment, some grammar family G. A grammar GΣ0 ∈ G
is called base grammar for the alphabet Σ if L(GΣ0 ) = Σ∗ and, furthermore,
every word in Σ∗ can be derived unambiguously via GΣ0 . Let G0 ⊂ G be a
collection of base grammars such that for every (with respect to G) possible
terminal alphabet Σ, there is exactly one base grammar in G0. Finally, grammar
1 Similar notions can be developed for automata.
2 For many properties of controlled language families, we refer to [20].
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subfamily G0 is called universal if CONTROL(G0,REG) = L(G), where L(G)
denotes the language family generated by the grammar family G.

In general, there are various universal grammar subfamilies. Consider, for
example, the following:

Example 5. Both {GΣ0 | Σ is an alphabet}, where

GΣ0 = ({S}, Σ, {S → λ} ∪ {S → aS | a ∈ Σ}, S)

and, more generally, all families G0,k = {GΣ0,k | Σ is an alphabet}, where

GΣ0,k = ({S}, Σ, {S → x | x ∈ Σ<k} ∪ {S → uS | u ∈ Σk}, S) ,

are universal for REG, i.e., CONTROL(G0,REG) = REG.

As within the permutation approach, we can use use universal grammar fa-
milies in order to obtain (new) learnable language families through learnable
control set classes. More specifically, we can present the following learning algo-
rithm for CONTROL(G0,L), given any learnable language class L:

1. Consider a new input word wj .
2. wj is transformed to the unique control word πj .
3. πj is given to the identification algorithm AL of L.
4. AL outputs hypothesis grammar Gj .
5. The whole algorithm outputs hypothesis language L(GΣ0 , L(Gj)), where Σ

is the alphabet of symbols contained in w1 . . . wj .

The algorithm is efficient if its second step can be performed in polynomial time.
We will assume this to be the case in the following. In a certain sense, grammar
Gj can be viewed as “representing” L(GΣ0 , L(Gj)). More precisely, since G0 is
universal, for every Gj there exists a Hj ∈ G such that L(Hj) = L(GΣ0 , L(Gj)).
If the transformation Gj 7→ Hj can be done efficiently3, the above algorithm
could indeed give a hypothesis grammar, namely Hj , in its last step.

Remark 6. As described above, each grammar G ∈ G0 translates a string over,
say, Σ into another string over another alphabet. For example, each GΣ0,k (as
defined in Example 5) can be viewed as a deterministic generalized sequential
machine.4 This view immediately explains two things:

– The transformation of a word w into its control word (with respect to GΣ0,k)
can be done in linear time.

– If L is a trio, then CONTROL(G0,k,L) = L for each k ≥ 1 due to the
Theorem of Nivat [6,27].

Actually, GΣ0,k realizes some sort of tape compression. We will consider words
over ∆ = Σ≤k as control words for GΣ0,k.
3 This is indeed the case for all published learning applications of control languages

we know of.
4 For notions like generalized sequential machines, trios, etc. we refer to [6,22,27].
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Note that even considering identifiable subclasses of the regular languages
may yield new interesting identifiable subclasses in this way.

Theorem 7. We continue Example 5. For all k, l ∈ N, CONTROL(G0,k,
`-TLSS) is efficiently identifiable from positive samples.5 Moreover,

1. CONTROL(G0,1, `-TLSS) = `-TLSS ( CONTROL(G0,`, 2-TLSS),
2. CONTROL(G0,k, `-TLSS) ( CONTROL(G0,k, `+ 1-TLSS),
3. CONTROL(G0,k, `-TLSS) ( CONTROL(G0,k+1, `-TLSS),
4. CONTROL(G0,k, `-TLSS) ( CONTROL(G0,k`, 2-TLSS).

Proof. We have only to show the “moreover-part”:

1. CONTROL(G0,1, `-TLSS) = `-TLSS is clear by definition. In order to
show `-TLSS ⊆ CONTROL(G0,`, 2-TLSS), recall that languages from
`-TLSS can “test” prefixes and suffixes of length ` − 1 and forbidden
subwords of length `. On the other hand, the input word w ∈ Σ∗ of
the combined learning algorithm will be essentially sliced into parts w =
u1 . . . un, where ui ∈ Σ` and un ∈ Σ<`, if we let words v from Σ` denote
the rule S → vS in GΣ0,` and words v ∈ Σ<` denote the rule S → v in
GΣ0,`. Note that u1, . . . , un are the input symbols of the word given to
the 2-TLSS algorithm.
Consider now L = I`Σ

∗ ∩Σ∗F` \Σ∗T`Σ∗, where I`, F` ⊆ Σ<` and T` ⊆
Σ`. Let I ′

` = (I`Σ∗ ∩Σ`−1) ∪ (I`Σ∗ ∩Σ∗F` ∩Σ<`−1) and F ′
` = (Σ∗F` ∩

Σ`−1)∪(I`Σ∗∩Σ∗F`∩Σ<`−1). Observe that L = I ′
`Σ

∗∩Σ∗F ′
` \Σ∗T`Σ∗

and I ′
` ∩ F ′

` ∩Σ<`−1 = L ∩Σ<`−1.
We have to design a language L̂ = Î2∆

∗ ∩∆∗F̂2 \∆∗T̂2∆
∗ ⊂ ∆∗, where

∆ = Σ≤`.
Let us first consider “short words” u of length < ` in L. Hence, u has to
be in the control set, which is guaranteed when u is both in Î2 and in
F̂2. In particular, Î2 ∩Σ<` = L ∩Σ<`.
In the following, we restrict our discussions to words of length at least
`. Now, p is a prefix of length `− 1 of w iff p is prefix of u1, a property
which can be tested easily by the control language which is from 2-TLSS.
More specifically, Î2 ∩Σ` = {pa | p ∈ I ′

`, a ∈ Σ}.
The set of subwords of length ` of w equals the set of subwords of length
` of the language {uiui+1 | 1 ≤ i < n}, so that forbidden subwords of
length ` of w can be tested through forbidden subwords of length 2 of
the control language.
Finally, let s be a suffix of length ` − 1 of w. This basically means
that we have to “allow” all suffixes uv of control words, where u ∈ Σ`,
v ∈ Σ<` and s is suffix of uv. In particular, this means that s is in F̂2.
But this is not enough. We have to put all suffixes of s in F̂2 and forbid
T = {uv | u ∈ Σ`, v ∈ Σ<`,∀s ∈ F ′

` ∩Σ`−1 : s 6= v and s is not suffix of
uv}.
The inclusion is strict since Σ2`−1 ∈ CONTROL(G0,`, 2-TLSS)\`-TLSS.

5 [17] contains an algorithmic definition of an automata family characterizing k-TLSS.
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2. & 3. The inclusions themselves are trivial. L = {w ∈ Σ∗ | |w| ≤ k` +
1} /∈ CONTROL(G0,k, `-TLSS), but L lies in both CONTROL(G0,k,
`+ 1-TLSS) and CONTROL(G0,k+1, `-TLSS).

4. This is a straightforward generalization of the first item. ut

Example 8. {aa} ∈ 3-TLSS. This yields the control “word” [aa] of length 1
(codifying the rule S → aa) via G{a}

0,3 . Obviously, [aa] ∈ 2-TLSS.

5 Putting Things Together

Let Ψ = (ψn) and Φ = (φn) be uniformly polynomial-time computable families
of permutations. Let G0 be a universal subfamily of the grammar family G. If
language family L(G) is efficiently identifiable from positive samples only, then
the following algorithm is also efficient:

1. Permute an input word wj according to Ψ−1, yielding w′
j = Ψ−1(wj).

2. Compute the control word πj of w′
j according to a suitable G0 ∈ G0.

3. Permute πj according to Φ−1, yielding π′
j = Φ−1(πj).

4. The identification algorithm, given π′
j , yields a grammar Gj .

5. The new guess of the whole algorithm is Ψ(L(G0, Φ(L(Gj)))).

Here, we get the problem of which language family L(Ψ,G0, Φ,L(G)) will
be identified using such a mixed strategy. In some special cases, we could give
characterizations of those language families, and we will focus on those families
in the following. To this end, let Φ = ID be the family of identities.

Example 9. Let Ψ be defined as in Example 3 and G0,2 as in Example 5. Then,
L(Ψ,G0,2, ID,REG) = ELL. This can be easily seen by observing the following
facts:

1. The grammarsHΣ
0 = ({S}, Σ, {S → aSb | a, b ∈ Σ}∪{S → x | x ∈ Σ<2}, S)

are universal for the even linear languages, see [33,23,24].
2. Control words for HΣ

0 can be viewed as words over ∆, where ∆ = Σ≤2.
Observe that words over ∆ can be viewed as control words for GΣ0,2 as well.

3. If w ∈ Σ∗ has the control word π according toHΣ
0 , then Ψ(w) has the control

word π according to GΣ0,2 and vice versa.

Hence, in particular,

L(Ψ,G0,2, ID, 2-TLSS) = CONTROL({HΣ
0 | Σ is an alphabet}, 2-TLSS)

is identifiable from positive samples only.

The following observation is an immediate corrollary of the definitions. It is
interesting, since semilinear properties generally need non-trivial proofs.6

6 The notion of semilinearity is explained, e.g., in [22]. It is important both from a
linguistic point of view and from the standpoint of learning algorithms, cf. [8,35].



82 H. Fernau and J.M. Sempere

Corollary 10. Fix k ≥ 1. Let Ψ and Φ be arbitrary families of permutations.
Then, L(Ψ,G0,k, Φ,REG) contains only semilinear languages, where G0,k is de-
fined as in Example 5.

In the following, we restrict the notion of universal grammar family further:

Definition 11. Let us call a subfamily G0 = {GΣ0 | Σ is an alphabet} of linear
grammars uniformly described if every universal grammar GΣ0 contains exactly
one nonterminal S and the rules of GΣ0 can be characterized by a pair of natural
numbers (n,m) such that S → α with α ∈ Σ∗ is a rule iff |α| < n + m and
S → αSβ is a rule iff α ∈ Σn and β ∈ Σm.

One can easily prove:

Lemma 12. If G0 is a uniformly described grammar family, then
CONTROL(G0,REG) ⊆ LIN.

In the proof of the preceding lemma, the regular control language given by,
e.g., a deterministic finite automaton, is simulated in the nonterminals which
basically store the state of the automaton.

For example, the universal grammar subfamilies presented for REG in Ex-
ample 5 are uniformly described, as well as the universal grammar subfamily for
ELL in Example 9.

Theorem 13. If G0 is a uniformly described universal family of linear gram-
mars, then there exists a uniformly polynomial-time computable family of per-
mutations Ψ such that Ψ(L(G0)) = REG.

Proof. (Sketch) Let GΣ0 ∈ G be described by the number pair (n,m). Let Ψ =
(ψ` | ` ∈ N) be recursively defined as:

ψ`(ν) = ν, if ` < n+m ∨ ν ≤ n
ψ`(`− ν + 1) =n+ ν, if ` ≥ n+m ∧ ν ≤ m
ψ`(ν) =n+m+ ψ`−n−m(ν − n), if ν ∈ (n, `−m)

ut

Example 14. Considering the rule pattern S → uSv, S → u and S → λ where
u, v are terminal placeholders (this corresponds to Example 9), we obtain a gram-
mar family which characterizes ELL. The corresponding family of permutations
can be defined recursively according to the preceding proof as:

ψn(m) =




1 , if m = 1
2 , if m = n
ψn−2(m− 1) + 2, if m ∈ (1, n)

By an obvious induction argument, one sees that this family of permutations is
the same as that in Example 3.
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As a simple corollary of our previous discussions, we can state:

Corollary 15. Consider a language family L ⊂ REG for which a polynomial-
time learning algorithm in the limit from positive data is known and a uniformly
described universal grammar family G0. Let Ψ be the family of permutations defi-
ned in the previous theorem. Then Ψ−1(L) ⊂ LIN can be learned in polynomial-
time in the limit from positive data as well. Moreover, there is a family of linear
grammars characterizing Ψ−1(L).

Our observations are easily generalizable towards regular or linear tuple lan-
guages, cf. [25] (which are indeed equivalent to regular or linear simple matrix
languages, cf. [9,29,34]) or towards regular-like expressions and their automata,
see [7]. We give a combination of Definitions 25 and 26 of Brzozowski as well as
of those of Păun, incorporating a suitable “even”-condition, in the following:

Definition 16. An even one-sided linear parallel grammar of order n with direc-
tion vector δ = δ1 . . . δn ∈ {L,R}n is an (n+3)-tuple G = (V1, . . . , Vn, Σ,M, S) ,
where {S}, V1, . . . , Vn, Σ are pairwise disjoint alphabets (VN =

⋃n
i=1 Vi∪{S} con-

tains the nonterminals and Σ the terminals), and M is a finite set of matrices
of the form

1. (S → A1 . . . An), for Ai ∈ Vi, 1 ≤ i ≤ n, or
2. (A1 → λ, . . . , An−1 → λ,An → xn), for Ai ∈ Vi, xn ∈ Σ<n, 1 ≤ i ≤ n, or
3. (A1 → x1B1y1, . . . , An → xnBnyn), for Ai, Bi ∈ Vi, xi = λ and yi ∈ Σ iff

δi = R, xi ∈ Σ and yi = λ iff δi = L, for 1 ≤ i ≤ n.

Let VG = VN ∪ Σ. For x, y ∈ V ∗
G, we write x ⇒ y iff either (i) x = S,

(S → y) ∈ M , or (ii) x = u1A1v1 . . . unAnvn, y = u1w1v1 . . . unwnvn, and
(A1 → w1, . . . , An → wn) ∈ M . As usual, define L(G) = {x ∈ Σ∗ | S ∗⇒ x},
where ∗⇒ is the reflexive transitive closure of relation ⇒. Let the corresponding
language family be denoted by δ-ELPL, where δ ∈ {L,R}+.

Remark 17. Obviously, REG = R-ELPL = L-ELPL, and ELL = LR-ELPL =
RL-ELPL.7 Moreover, Rn-ELPL is the class of even equal matrix languages
considered by Takada [34], and (LR)n-ELPL is the class of even linear simple
matrix languages (of degree n) considered by Fernau [9]. It can be shown that,
for every direction vector δ, δ-ELPL ⊆ (LR)2|δ|-ELPL.

It is now a rather easy exercise to extend the notion of uniformly described
grammar families for each direction vector within the definition of even one-sided
linear parallel grammars. Similarly, Lemma 12 and Theorem 13 transfer to this
more general case.

7 The last equality can be seen by the fact that RL-ELPL grammars can be viewed
as an alternative formalization of regularly controlled external contextual grammars,
whose relation to linear grammars is exhibited in [28, Section 12.3].
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6 Further Inference Methods

6.1 Morphic Generator Grammatical Inference

This methodology has been proposed in [14,16]. Here, the starting point is the
well-known fact that every regular language is the image of a 2-testable language
under a letter-to-letter morphism [26]. So, the general grammatical inference
method as proposed by Garćıa et al. [16] is the following one: Given an input
sample from an unknown (regular) language, choose a mapping g to transform
the sample. Then, an inference method for 2-TLSS is applied to the transformed
sample in order to obtain a 2-TLSS language. Finally, a morphism h is selected
in order to transform the conjectured language to the original regular one. If g
and h are well selected, then the target regular language can be learned from
the original positive input sample. Unfortunately, there is no way to characterize
the mappings g and h in order to perform the learning task. Furthermore, as
a consequence of a previous work by Angluin [3], the general strategy to learn
regular languages from only positive sample is not possible. Here, we can prove
the following generalization to the method by Garćıa et al.:

Theorem 18. Let Ψ, Φ be families of permutations. For every k ≥ 1, every
language from L(Ψ,G0,k, Φ,REG) is the image of a language from L(Ψ,G0,k, Φ,
2-TLSS) under a letter-to-letter morphism.

Proof. (Sketch) Consider a language L ∈ L(Ψ,G0,k, Φ,REG), L ⊆ Σ∗. This
means that Ψ−1(L) = L(GΣ0,k, Φ(R)) for a suitable regular language R. By [26],
there exists a letter-to-letter morphism h : X×Σ≤k → Σ≤k such that R = h(R′)
for some R′ ∈ 2-TLSS. Since Φ is a permutation, we have Φ(R) = Φ(h(R′)) =
h(Φ(R′)). Every word (x1, α1) . . . (xn, αn) ∈ X ×Σ≤k, can be viewed as control
word of GX×Σ

0,k , considering (X × Σ)≤k as a subset of X × Σ≤k. Taking now
the natural projection letter-to-letter morphism h′ : X × Σ → Σ, we conclude
L = h′(L′), where Ψ−1(L′) = L(GX×Σ

0,k , Φ(R′)). ut

This suggests the following methodology for identifying languages L ⊆ Σ∗

from L(Ψ,G0,k, Φ,REG): 8

1. Choose a (larger) alphabet Σ′ and a letter-to-letter morphism h : Σ′ → Σ.
2. Choose an easily computable function g : Σ∗ → Σ′∗ such that h(g(w)) = w

for all w ∈ Σ∗.
3. The input sequence w1, w2, . . . is transformed into the sequence g(w1), g(w2),
. . . which is given to the identification algorithm for L(Ψ,G0,k, Φ, 2-TLSS).

4. The output language sequence L1, L2, . . . hence obtained is interpreted as
the language sequence h(L1), h(L2), . . . of languages over Σ.

8 Again, we assume the transformations induced by Ψ , G0,k and Φ be be computable
in polynomial time.
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6.2 Query Learning

In the query learning model introduced by Angluin [5], the inference machine
IM plays an active role (in contrast with Gold’s model) in the sense that IM
interacts with a teacher T. More precisely, at the beginning of this dialogue, IM
is just informed about the terminal alphabet Σ of the language L that IM should
learn. IM may ask T the following questions:

Membership query Is w ∈ L ?
Equivalence query Does the hypothesis grammar G generate L?

Teacher T reacts as follows to the questions:

1. To a membership-query, T answers either “yes” or “no”.
2. To an equivalence-query, T answers either “yes” (here, the learning process

may stop, since L has performed its task successfully) or “no, I will show
you a counterexample w.”

Since Angluin showed that all regular languages can be learned in polynomial
time by using the learner-teacher dialogue just explained, we can immediately
infer:

Theorem 19. Let k ≥ 1. If Ψ and Φ are computable in polynomial time, then
L(Ψ,G0,k, Φ,REG) can be learned in the query learning model in polynomial time.

ut

Remark 20. When equivalence queries are not reckoned as oracle calls, they
should be computable. Since Ψ(L) = Ψ(L′) iff L = L′, it is not hard to see
that equivalence is indeed decidable within the (Ψ,G0,k, Φ)-setting due to the
decidability of the equivalence problem for regular languages.

In the query learning model, the complete power of the formalism is not
needed:

Theorem 21. Let k ≥ 1. If Ψ and Φ are computable in polynomial time, then
L(Ψ,G0,k, Φ,REG) = Ξ(REG) for some polynomial-time computable permuta-
tion Ξ.

Proof. By definition, L ∈ L(Ψ,G0,k, Φ,REG) if Ψ−1(L) = L(GΣ0,k, Φ(R)) for
some regular language R. Due to Remark 6, L(GΣ0,k,M) = τ(M) for some ra-
tional transduction τ . Moreover, for another permutation Φ′, L(GΣ0,k, Φ(R)) =
Φ′(τ(R)) = Φ′(R′) for some regular language R′. Setting Ξ = ΨΦ′ yields the
theorem. ut

This implies that when we are interested in language classes induced by the
whole class of regular languages, we can confine ourselves to permutations, which
conceptually simplifies all considerations in this case.
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7 Conclusions

We presented two quite powerful general and mutually related mechanisms to
define further efficiently learnable language classes from already known ones,
namely

1. by using families of permutations and
2. by exploiting control language features.

Such “language class generators” can be quite useful since it has turned out
that, in various applications, it is necessary to make a choice of the language
class to be learned based on experience or additional knowledge inspired by the
application, see, e.g., the discussion in [1]. Therefore, it seems to be good if
one could enhance the set of possible choices and use, e.g., known structural
information like bracket structures.

Furthermore, since polynomial-time computable permutation families are clo-
sed under permutationwise composition, it makes sense to consider language fa-
milies like the class Ψ−1(Ψ−1(Ψ−1(L))) which is also efficiently inferrable from
positive data if L is.

Similarly, any class like CONTROL(G0,CONTROL(G0,CONTROL(G0,L)))
is efficiently inferrable from positive data if L is.

Such hierarchies deserve further studies, as begun in [37,36].
Finally, it would be interesting to develop further general techniques in order

to apply known learning (especially, identification) algorithms to other language
families. One such technique could consists in a suitable splitting of input words,
as exhibited in the case of externally contextual languages in [13] and in the case
of parallel communicating grammars systems in [12].
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8. J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory, vo-
lume 18 of EATCS Monographs in Theoretical Computer Science. Berlin: Springer,
1989.

9. H. Fernau. Efficient learning of some linear matrix languages. In T. Asano et al.,
editors, COCOON’99, volume 1627 of LNCS, pages 221–230, 1999.

10. H. Fernau. Learning of terminal distinguishable languages. Technical Report
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23. E. Mäkinen. The grammatical inference problem for the Szilard languages of linear
grammars. Information Processing Letters, 36:203–206, 1990.
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