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Abstract. In this work we propose an efficient solution to calculate the
minimum editing distance between membrane structures of arbitrary P
systems. We use a new model of tree automata based on multisets of
states and symbols linked to the finite control. This new model accepts
a set of trees with symmetries between their internal nodes (mirrored
trees). Once we have calculated the editing distance between an arbi-
trary tree and an arbitrary multiset tree automaton, we can translate
the classical operations of insertion, deletion and substitution into rule
applications of membrane dissolving and membrane creation.

1 Introduction

One of the main components of P systems is the membrane structure. This
structure evolves during the computation time due to the application of rules
associated to the membranes. The membrane structure can be represented by a
tree in which the internal nodes denote regions which have inner regions inside.
The root of the tree is always associated to the skin membrane of the P system.

The relation between regions and trees has been recently strengthened by
Freund et al. [7]. These authors have established that any recursively enumerable
set of trees can be generated by a P system with active membranes and string
objects. So, P systems can be viewed as tree generators.

In this work we use multiset tree automata to accept and handle the tree
structures defined by P systems [16]. This model is an extension of classical tree
automata [8] in which the states and symbols of the finite control form multisets.
Multiset theory has been linked to parallel processing as showed in [2].

The main aspect we will solve in this work is the one related to editing struc-
tural configurations of P systems. Recently, Csuhaj-Varjú et al. [4] have proposed
editing distances between configurations of P systems. Here, we restrict our so-
lution only to the structural configuration of P systems, that is, the membrane
structure underlying any P system configuration. The multiset tree automata
model that we propose in this work will be useful to calculate the trees associ-
ated with membrane structures. Here we can take advantage of a previous work
on editing distances between trees and tree automata [10].

The structure of this work is as follows. First we introduce basic definitions and
notation about multisets, tree languages and automata and P systems. In section
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3, we introduce the model of multiset tree automata, we define the relation of
mirroring between trees and we establish some results between tree automata,
multiset tree automata, and mirroring trees. In section 4, we use previous results
about editing distances between trees and tree automata in order to solve the
minimum editing distance between membrane structures. Finally, we state some
conclusions and give some guidelines for future works.

2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane computing, and multiset processing. Further details can be found in the
books [15], [12], and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in [17].

Definition 1. Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by A � B, is the multiset C = 〈D, h〉
where for all a ∈ D h(a) = max(f(a) − g(a), 0).

Definition 3. Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Definition 4. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum,
denoted by A ⊕ B, is the multiset C = 〈D, h〉, where for all a ∈ D h(a) =
f(a) + g(a).

Definition 5. Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say
that A = B if for all a ∈ D f(a) = g(a).

The number of elements that a multiset contains can be finite. In such case,
the multiset will be finite too. The size of any multiset M , denoted by |M |
will be the number of elements that it contains. We are specially interested in
the class of multisets that we call bounded multisets. They are multisets that
hold the property that the sum of all the elements is bounded by a constant
n. Formally, we will denote by Mn(D) the set of all multisets 〈D, f〉 such that∑

a∈D f(a) = n.
A concept that is quite useful to work with sets and multisets is the Parikh

mapping. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
N

n where D = {d1, d2, . . . , dn} and D∗ is the set of strings defined by D. Given
an element x ∈ D∗ we define Ψ(x) = (#d1(x), . . . , #dn(x)) where #dj (x) denotes
the number of occurrences of dj in x.

Later, we will use tuples of symbols and states as strings and we will apply
the Parikh mapping as defined above.
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Tree Automata and Tree Languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 8]. First, a ranked alphabet is the pair (V, r) where V is an alphabet
and r is a finite relation in V × N. We denote by Vn the subset {σ ∈ V |
(σ, n) ∈ r}. Given (V, r) we define maxarity(V ) as the maximum integer n such
that(σ, n) ∈ r.

For every ranked alphabet (V, r), the set of trees over V , is denoted by V T

and defined inductively as follows:

a ∈ V T for every a ∈ V0,
σ(t1, . . . , tn) ∈ V T whenever σ ∈ Vn and t1, . . . , tn ∈ V T , n > 0,

and let a tree language over V be defined as a subset of V T .
Given the tuple l = 〈1, 2, . . . , k〉 we will denote the set of permutations of l by

perm(l). Let t = σ(t1, . . . , tn) be a tree over V T , we will denote the set of per-
mutations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , . . . , tin) |
〈i1, i2, . . . , in〉 ∈ perm(〈1, 2, . . . , n〉)}.

Let N
∗ be the set of finite strings of natural numbers, separated by dots,

formed using the product as the composition rule and the empty word λ as the
identity. Let the prefix relation ≤ in N

∗ be defined by the condition that u ≤ v
if and only if u · w = v for some w ∈ N

∗ (u, v ∈ N
∗). A finite subset D of N

∗ is
called a tree domain if:

u ≤ v, where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j).

Each tree domain D could be seen as an unlabelled tree whose nodes cor-
respond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Let the level of x ∈ dom(t) be denoted by level(x). Intuitively, the level of a
node measures its distance from the root of the tree. Then, we can define the
depth of a tree t as depth(t) = max{level(x) | x ∈ dom(t)}. In the same way,
for any tree t, we denote the size of the tree by |t| and the set of subtrees of t
(denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0,

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, . . . , tn) (n > 0).

For any set of trees T , Sub(T ) =
⋃

t∈T Sub(t). Given a tree t = σ(t1, . . . , tn),
the root of t will be denoted as root(t) and defined as root(t) = σ. If t = a,
then root(t) = a. The successors of a tree t = σ(t1, . . . , tn) will be defined as
Ht = 〈root(t1), . . . , root(tn)〉.
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Definition 6. A finite deterministic tree automaton is defined by the tuple A =
(Q, V, δ, F ), where Q is a finite set of states, V is a ranked alphabet, Q ∩ V = ∅,
F ⊆ Q is a set of final states, and δ =

⋃
i:Vi �=∅ δi is a set of transition functions

defined as follows:

δn : (Vn × (Q ∪ V0)n) → Q n > 0,

δ0(a) = a ∀a ∈ V0.

Given the state q ∈ Q, we define the ancestors of the state q, denoted by Anc(q),
as the set of strings

Anc(q) = {p1 . . . pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, . . . , pn) = q ∈ δ}.

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3, 8] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0,

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0).

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
one can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q, V, δ, F ), where:

Q = Sub(T ),
F = T,

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q,

δ0(a) = a a ∈ V0.

P Systems

Finally, we will introduce some basic concepts from the theory of membrane
systems taken from [12]. A general P system of degree m is a construct

Π = (V, T, C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

– V is an alphabet (the objects),
– T ⊆ V (the output alphabet),
– C ⊆ V , C ∩ T = ∅ (the catalysts),
– µ is a membrane structure consisting of m membranes,
– wi, 1 ≤ i ≤ m is a string representing a multiset over V associated with the

region i,
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– Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with the
ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v), where u is a string over V and
v = v′ or v = v′δ, where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m},

and δ is an special symbol not in V (it defines the membrane dissolving
action),

– i0 is a number between 1 and m and it specifies the output membrane of Π ,
or i0 = ∞ and in this case the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time, then all permutations are allowed). The set
of numbers that represent the objects in the output membrane i0 will be denote
by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for halting
computations.

Some kinds of P systems which have been proposed focus on the creation, di-
vision, and modification of membrane structures. There have been several works
in which these operations have been proposed (see, for example, [1, 11, 12, 13]).

In the following, we enumerate some kinds of rules which are able to modify
the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′ ,
2. Creation: a → [hb]h,
3. Dissolving: [ha]h → b.

The power of P systems with the previous operations and other ones (e.g.,
exocytosis, endocytosis, etc.) has been widely studied in the literature.

3 Multiset Tree Automata and Mirrored Trees

We will extend some definitions of tree automata and tree languages over mul-
tisets. We will introduce the concept of multiset tree automata and then we will
characterize the set of trees that they accept, as exposed in [16]. Observe that
our approach is different from Csuhaj-Varjú et al. [5] and from Kudlek et al.
[9] where the authors consider the case that bags of objects are analyzed by an
abstract machine. Here, we do not consider bags of (sub)trees but we introduce
bags of states and symbols in the finite control of the automata.

Given any tree automaton A = (Q, V, δ, F ) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1) ⊕ MΨ (p2)⊕ · · · ⊕ MΨ (pn) where
MΨ (pi) ∈ M1(Q∪V0) for all 1 ≤ i ≤ n. Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ, and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over
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the same set of states and symbols but in different order (that is, the multiset
induced by 〈p1p2 . . . pn〉 equals the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 7. A multiset tree automaton is defined by the tuple MA = (Q, V, δ,
F ), where Q is a finite set of states, V is a ranked alphabet with maxarity(V ) =
n, Q∩V = ∅, F ⊆ Q is a set of final states, and δ is a set of transition functions
defined as follows:

δ =
⋃

1 ≤ i ≤ n

Vi �= ∅

δi,

δi : (Vi × Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n,

δ0(a) = MΨ (a) ∈ M1(Q ∪ V0) ∀a ∈ V0.

We can take notice that every tree automaton A defines a multiset tree au-
tomaton MA as follows

Definition 8. Let A = (Q, V, δ, F ) be a tree automaton. The multiset tree automa-
ton induced by A is defined by the tuple MA = (Q, V, δ′, F ) where each δ′ is defined
as follows: MΨ (r) ∈ δ′n(σ, M) if δn(σ, p1, p2, . . . , pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A is
non-deterministic.

As in the case of tree automata, δ′ could also be extended to operate on
trees. Here, the automaton carries out a bottom-up parsing where the tuples
of states and/or symbols are transformed by using the Parikh mapping Ψ to
obtain the multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns
a multiset with at least one final state, then the input tree is accepted. So, δ′

can be extended as follows:

δ′(a) = MΨ (a) for any a ∈ V0,
δ′(t) = {M ∈ δ′n(σ, M1 ⊕ · · · ⊕ Mn) | Mi ∈ δ′(ti) 1 ≤ i ≤ n},

for t = σ(t1, . . . , tn) (n > 0).

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}.

Another extension which will be useful is the one related to the ancestors of
every state. So, we define AncΨ (q) = {M | MΨ (q) ∈ δn(σ, M)}. The following
two results characterize the relation between the languages accepted by tree
automata and the multiset tree automata induced by them.

Theorem 1. (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree au-
tomaton, MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A and
t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q, then MΨ (q) ∈ δ′(t).
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Corollary 1. (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree automa-
ton and MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A. If
t ∈ L(A), then t ∈ L(MA).

Mirrored Equivalent Trees

We will introduce the concept of mirroring in tree structures as it was exposed
in [16]. Informally speaking, two trees will be related by mirroring if some per-
mutations at the structural level make the difference among them. For example,
the trees of Figure 1 have identical subtrees except that some internal nodes
have changed their order.

C

F

A

C

F

A

B

E D

B

D E

G H GH

Fig. 1. Two mirrored trees

We propose a definition that relates all the trees with this mirroring property.
For any other concepts used in this section, we refer to the previous section 2
on tree automata.

Definition 9. Let (V, r) be a ranked alphabet and t and s be two trees from
V T . We say that t and s are mirror equivalent, denoted by t �� s, if one of the
following conditions holds:

1. t = s = a ∈ V0,
2. t ∈ perm1(s),
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists 〈s1, s2, . . . , sk〉 ∈

perm(〈s1, s2, . . . , sn〉) such that ti �� si for all 1 ≤ i ≤ n.

The following results characterize the set of trees accepted by a multiset tree
automaton induced by a tree automaton.

Theorem 2. (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree automa-
ton, t = σ(t1, . . . , tn) ∈ V T , and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F )
be the multiset tree automaton induced by A. If t �� s, then δ′(t) = δ′(s).

Note that the converse result of this theorem is not generally true. For instance,
consider the trees t = σ(a) and s = σ(a, σ(a)) and the tree automaton with the
following transition function:

δ1(σ, a) = q1 ∈ F, δ2(σ, a, q1) = q1 ∈ F.

It is easy to see that δ′(t) = δ′(s) but t is not mirror equivalent to s.
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Corollary 2. (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree automa-
ton, MA = (Q, V, δ′, F ) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA), then s ∈ L(MA) for any s ∈ V T such that t �� s.

The last results were useful to propose an algorithm to determine whether two
trees are mirror equivalent or not [16]: given two trees s and t, we can establish
in time O((min{|t|, |s|})2) if t �� s.

4 Solving the Membrane Structure Recognition Problem

Recently, in [7], a way to generate trees by membrane systems has been proposed.
Initially, any membrane structure can be represented by a tree taking the mem-
brane structure as a hierarchical order between regions. Freund et al. [7] have
taken advantage of a variant of P systems with active membranes and string ob-
jects. Active membranes have an electrical charge (polarization) together with
a set of rules that allow the membrane to change polarizations, move objects
(strings), dissolving the membrane, 2-dividing the membrane, etc. They have
proved that any recursively enumerable tree language can be generated by a
P system.

A way to recognize two identical membrane structures by taking advantage
of tree representations was proposed in [16]. For example, let us see Figure 2, in
which we represent a membrane structure with different trees.

A

C

F

B

D E

B

D E

C

F

A

C

F

A

A
B C

D

E F

B

E D

Fig. 2. A membrane structure together with different representations by trees

Obviously, the initial order of a membrane structure can be fixed. Anyway,
whenever the system evolves (by membrane dissolving, division, creation, etc.)
this order can be somehow ambiguous. Furthermore, the initial order of a P
system is only a naming convention given that the membrane structure of any
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P system can be renamed without changing its behavior due to the parallelism
(observe that if this mechanism were sequential, then the ordering could be
important for the final output).

The representation by trees could be essential for the analysis of the dynamic
behavior of P systems. Whenever we work with trees to represent the membrane
structure of a given P system, we can find a mirroring effect. Again, look at
Figure 2: the three different trees proposed for the membrane structure have a
mirroring property, that is, some subtrees at a given level of the tree have been
permuted.

The method that we propose to establish if two membrane structures µ and
µ′ are identical is based on the algorithm proposed in [16]. First, we represent µ
and µ′ by t and s respectively. Then, we apply the proposed algorithm and, if
t �� s we can affirm that µ and µ′ are identical.

5 Editing Distances Between Membrane Structures

The study of relations between membrane structures is proposed in the sequel.
The main problem we address is the following:

Let µ and µ′ be two membrane structures corresponding to arbitrary P systems.
What is the minimum set of membrane rule applications needed to transform one
into the other?

The solution to the last problem can be approached by using multiset tree
automata and editing distances between trees and tree automata. A previous
work [10], considered the case of tree automata. Here, we will extend the previous
results to multiset tree automata as described in previous sections.

First, we will describe the method employed in [10], in order to give the main
components of the editing distance calculation.

Given a tree automaton A = (Q, V, δ, F ) and a tree t, the distance between
t and A can be established as the minimum in the set {D(t, q) | q ∈ F},
where D(t, q) is the minimum distance of the tree t to the state q. The dis-
tance D(t, q) evaluates the number of operations needed to reduce the tree t
to the state q according to the function δ in automata A. Some operations in-
volved in the distance refer to operations for trees as Insertion, Deletion and
Substitution. We consider the costs for these operations as exposed in [10].
Observe that these costs are usually defined by taking into account the sizes
of the trees. So, the bigger tree involved in the operation, the bigger cost to
handle it:

– Insertion
∀a ∈ V I(a) = 1
I(σ(t1, t2, . . . , tk)) = 1 +

∑
∀j I(tj),

– Deletion
∀a ∈ V B(a) = 1
B(σ(t1, t2, . . . , tk)) = 1 +

∑
∀j B(tj),
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– Substitution
∀a ∈ V S(a, a) = 0
∀a, b ∈ V S(a, b) = 1
S(σ(t1, t2, . . . , tk), a) = B(σ(t1, t2, . . . , tk)) + I(a)
S(a, σ(t1, t2, . . . , tk)) = B(a) + I(σ(t1, t2, . . . , tk)).

So, the distance of every (sub)tree to a tree automaton will involve every
ancestor of each state of the automata together with the substructures of the
tree. If we have to reduce the structure σ(s1, s2, . . . , sn) to the state q such that
Anc(q) contains 〈p1, . . . , pm〉, we will have to modify substructures si or we will
have to insert states pj at the minimum cost.

The edition cost of every tree to every state of the automaton can be calculated
by considering the set of ancestors of the state and the set of successors of the
tree. Then we can apply a dynamic programming scheme that takes into account
previous calculations which can be stored in a distance matrix. For additional
details of this method we refer the reader to [10].

The main components used to calculate the distance of a tree t to a multiset
tree automaton MA are the same as in the tree automata case with the following
remarks:

1. The successors of any node in the tree are considered as a multiset instead
of a sequence.

2. The ancestors of every state in the automaton form a multiset.
3. The editing costs for trees and states are the same as in the tree automata.
4. The calculation of the edit distance is performed by using a edition matrix

which can be obtained by using a dynamic programming strategy with some
differences which will be explained later.

We propose Algorithm 1 which obtains the distance from a tree t to a
multiset tree automaton MA. Note that the target of the algorithm is to force
the automaton to accept the tree. Therefore the set of edit operations is not
fully needed. The algorithm use edit operations for substitution (reduction) of
a tree to a state of the automaton, deletion of a (sub)tree and insertion of a
state. Intuitively, the substitution of a tree by a state of the automaton could be
seen as the substitution of the tree by the nearest tree that could be reduced to
the state.

The error-correcting analysis method is shown in Algorithm 1. First the cost
of the basic operations are obtained (i.e., insertion cost of a state and deletion of
a subtree). Each of the calculations carried out are stored in a distance matrix
indexed by the set of subtrees and the set of states of the automaton. This
matrix is first initialized and the basic distances are stored. Distances between
symbols in V0 and between any symbol and any state of the automaton are also
considered.

Note that the key problem of the algorithm is to find, for any subtree t′ =
σ(t1, . . . , tn) of t and any transition δ(σ, M) = MΨ (p), with M ∈ AncΨ (p),
the matching of minimum cost between each ti and the states and symbols in
M . This problem can be reduced to the minimum cost maximum matching or
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Algorithm 1. Algorithm to obtain the minimum distance from a tree
t to the nearest tree in L(MA).
Input:

A multiset tree automaton A = (Q,V, δ, F ).
A tree t.

Output:
Edit distance from t to the automaton A.

Method:
/* initialization */
∀t′ ∈ Sub(t) B[t′] = |t′| end∀
∀a ∈ V0 I [a] = 1 end∀
∀q ∈ Q

I [q] = min{|t′| : δ(t′) = q}
∀t′ ∈ Sub(t)

D[t′, q] = ∞
end∀

end∀
∀a, b ∈ V0

D[a, b] =

�
1 if a �= b

0 otherwise
D[a, q] = 1 + I [q] : q ∈ Q

end∀
/* iteration */
∀t′ = σ(t′

1, . . . , t
′
n) ∈ Sub(t) /* postorder traverse */

∀δ(σ, M) = MΨ (p)
D[t′, p] = min(D[t′, p], MMC(t′, δ(σ, M)))

end∀
end∀
Return(min{D[t′, q] : q ∈ F})

EndMethod:

maximum bipartite matching problem [14]. It is known that this problem can be
solved in polinomial time by reducing it to the minimum cost maximum flow
(MCMF) problem (see also [14]). This scheme is similar to the one proposed in
[18] where the author considers distances between unordered trees.

Briefly, MCMF looks for obtaining, for a given graph G = (V, E) in which
functions capacity and cost are defined among the edges, the best way (with
lower cost) to send the maximum flow between two nodes of the graph. The flow
has to take into account the capacity constraint. The cost function measures the
penalization of each unit of flow. Several solutions have been implemented to
solve this problem and their complexities depend on the number of nodes n and
the number of edges of the graph m. A proper algorithm for our purposes could
be the one by Edmons and Karp [6] because its complexity depends only on the
number of nodes of the graph (O(n3)).

Given a tree t = σ(t1, . . . , tn) and a transition MΨ (p) ∈ δ(σ, M), the minimum
cost matching between ti and the states in M can be obtained by the subroutine
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MMC. First, this subroutine builds the directed graph from the parameters and
set the proper capacities and costs functions among the edges. Then, a general
solution could be run in order to solve the matching. The subroutine is shown
in Algorithm 2.

Intuitively, each successor tree and each state (namely nodes ti and qj respec-
tively) have their own nodes in the graph. Each node in one set is connected
with all the nodes in the other. These connections model the reduction (substi-
tution) of each tree to each state. Therefore, the capacity of these edges is set to
1 (these edges can be used only once) and the cost is set to the distance between
each tree and each state. Note that this distance is always available due to the
postorder traverse of the tree.

Algorithm 2. MMC Subroutine to obtain the Maximum Matching
of Minimum Cost.
Input:

A multiset tree automaton transition δ(σ, M) = MΨ (p).
A tree t = σ(t1, . . . , tn).

Output:
Minimum cost of the maximum match between {t1, . . . , tn}
and M .

Method:
/* construction of the graph */
Let G = (V, E) where:

V = {t1, . . . , tn} ∪ M ∪ {s, ss, iq, dt}
(ti, qj) ∈ E, ∀qj ∈ M ; i : 1..n
(ti, dt) ∈ E, i : 1..n
(iq, qj) ∈ E, ∀qj ∈ M
(s, ti) ∈ E, i : 1..n
(qj , ss) ∈ E, ∀qj ∈ M
(s, iq), (dt, ss) ∈ E

/* set capacities of each edge */
c(ti, qj) = 1, ∀qj ∈ M ; i : 1..n
c(ti, dt) = 1, i : 1..n
c(iq, qj) = #qj (M), i : 1..n
c(s, ti) = 1, i : 1..n
c(qj , ss) = #qj (M), ∀qj ∈ M
c(s, iq) = |M |, c(dt, ss) = n

/* set cost of each edge */
d(ti, qj) = D[ti, qj ], ∀qj ∈ M ; i : 1..n
d(ti, dt) = B[ti], i : 1..n
d(iq, qj) = I [qj ], ∀qj ∈ M
d(s, ti) = 0, i : 1..n
d(qj , ss) = 0, ∀qj ∈ M
d(s, iq) = 0
d(dt, ss) = 0

Return(MinCostMaxF low(G))
EndMethod:
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The set of edit operations we consider also takes into account the insertion of
a state. The node iq and the connections between this node and the nodes qj

model the insertion operation. Thus, the cost of these edges is set to the insertion
cost of the state. Note that the number of insertions of each state is bounded by
the number of occurrences of the state in M , therefore, the capacities of these
edges is set to this value.

In the same way, in order to model the deletion of trees, the node dt and the
connections with the successor trees are considered in the graph. Each tree can
be deleted only once, therefore the capacity of these edges is set to 1. Obviously,
the cost of these edges is set to the cost of deleting the corresponding tree.

The construction of the graph also considers a source node s. This node is
connected to the tree nodes, with connectivity 1 and cost 0 (these edges must
be selected without cost). The node s is also connected to the node iq and the
cost of this edge is set to 0. Note that the number of state insertions is bounded
by the number of states, therefore, the capacity of this edge is set to |M |. The
cost of this connection is set to 0.

Finally, the graph construction considers a sink node ss. This node is connected
with the state nodes qj with cost 0. Note that the edition process aims to fit the set
of successors with the multiset of ancestors, thus, the capacity of the edges must
be set to the number of occurrences of each state. The node dt is also connected
with the node ss with cost 0. This edge models the tree deletions, therefore, the
capacity of the connection must be set to the number of trees that can be deleted.

Example 1. Let us consider the tree t = σ(σ(b, σ(a, σ(a, b), a)), σ(a, σ(a, a))) and
the automaton defined by the following transition functions with q3 ∈ F :

δ(σ, aq1a) = q1, δ(σ, bq2) = q2, δ(σ, aa) = q1,
δ(σ, b) = q2, δ(σ, q1q2) = q3.

First, the insertion and deletion costs are obtained. They are shown in the fol-
lowing tables

t1 t2 t3 t4 t5 t6
3 6 8 3 5 14

q1 q2 q3

3 2 6
Deletion costs Insertion costs

Then, the editing process considers the first postorder subtree σ(a, b) and the
first transition δ(σ, aq1a) = q1. The process starts with the construction of the
graph shown in Figure 3.

Solid lines inFigure 3 show theminimumcostmatching.Thedistance is stored in
thematrixofdistances.Notethatthiscost is improvedwhenthetransitionδ(σ, aa)=
q1 is considered. The following table shows an intermediate state of the matrix.

DA t1 t2 t3 t4 t5 t6

q1 1 1
q2 1 3
q3 7
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Fig. 3. Underlying graph to obtain the distance of the first postorder subtree to the
first transition of the automaton. Edge labels show the capacity/cost. Solid lines show
the best matching.
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Fig. 4. Underlying graph to obtain the distance of the second postorder subtree to the
transition of the automaton δ(σ, q1q2) = q3. Solid lines show the best matching.

We now compute the distance of the second postorder subtree, σ(a, σ(a, b), a),
to the state q3. The underlying graph is shown in Figure 4. The best matching
is indicated in solid lines.

Observe that the minimum editing distance that we have calculated can be
established in terms of operations which have a translation into membrane rules.
Let us consider that µ is the membrane structure which is accepted by the
multiset tree automaton MA and µ′ is represented by a tree t. We have the
following correspondences between edition operations and membrane rules:

1. Insertion of state q
Let us suppose that the insertion is produced to match the ancestors of a
state p. The minimum tree that can be reduced to q is tj . The operations
needed to achieve this goal in the membrane structure are membrane creation
at region p in order to obtain membrane structure tj .

2. Reduction of tree ti to state q
Let us suppose that the tree which can be reduced to q with a minimal
cost is tj , according with the δ function of the automaton. The operations
needed to make this reduction are the ones involved to transform ti to tj at a
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region k. These operations consider again membrane creation and dissolving
depending on the operations involved in the minimum distance from ti to tj .

3. Substitution of a by b
The region a is dissolved and created with a new label.

4. Deletion of tree ti
Let us suppose that ti is a membrane structure at region k. The deletion
consists of several membrane dissolving of structure ti.

6 Conclusions and Future Work

We have proposed a method to calculate the minimum number of membrane
rules needed to transform a membrane structure into a different one. The number
of rules needed, if so, establishes an editing distance between P systems by
taking into account only membrane modifications. This measure can provide new
definitions about structural confluence in P systems, that is, structural agreement
during evolution.

Observe that we have worked with a simplified version of P systems. That
is, the objects inside any region do not influence the editing distance. A future
research will consider how the objects can be taken into account to calculate the
editing distance.
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10. D. López, J.M. Sempere, P. Garćıa: Error correcting analysis for tree languages. In-

ternational Journal of Pattern Recognition and Artificial Intelligence, 14, 3 (2000),
357–368.
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