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1 Introduction

The selection of proteins with certain characteristics from genomic sequences is a goal
of computational biology. One aspect of this problem is to detect certain subsequences
(domains or motifs) with some funtional features.

Proteins withcoiled coildomains are of interest for molecular biologists studying a
variety of processes such as protein transport and membrane fusions and the infection
of cells by parasites [1, 2].

The coiled coil is a ubiquitous protein folding and assembly motif made ofα-helices
wrapping around each other forming a supercoil. The sequences of coiled coils are made
of seven-residue repeats(abcde f g)n, called heptads, in which generally hydrophobic
core occurs at positionsa andd. The interaction between twoα-helices in a coiled coil
involves these hydrophobic residues, as well as the predominantly charged residues at
theeandg positions [3]. The result is a highly versatile protein interaction mechanism.

Several programs for predicting coiled coil domains have been described [4, 5]. All
these programs are based on the probability of appearance of every amino acid in each
position of the characteristic heptad, extracted from known coiled coil motifs. In them, a
protein sequence is analized using a sliding window of 28 amino acids. For each residue
in a test sequence, all these methods output a membership probability to a coiled coil
motif.

Recently, Delorenzi and Speed [6] propose aHidden Markov Model(HMM) based
approach. In their work, they take profit of the good characterization of the domain to
design the net of states of the HMM. The experimentation show good performance.

Nevertheless, the problem of locating general coiled coil motifs is far of being
solved. Several authors have noted several important coiled-proteins that are not de-
tected when the previous approaches are used (i.e., [7]).

In our work, we use a grammatical approach to decide whether a protein contains
a coiled coil motif or not. As far as we know, this approach to the processing of biose-
quences has been used only by Yokomori et al. [8] to a preliminaryalpha-helix detec-
tion task.

We tackle the problem of determining if a given protein contains at least a coiled
coil motif.
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We will use grammatical inference algorithms in order to model the classes involved
in the problem. We will consider the whole sequence of the protein instead using the
subsequences that contain such motifs. The experimental results obtained show that the
performance of our method is comparable to those described above. Whenever conve-
nient data were available, this approach could be extended for detection of other less
characterized motifs.

2 Database and methods

All the protein sequences were extracted from SwissProt (release 40, April 2003). All
the entries in the database are annotated with the known domains (motifs). We extracted
from the database the sequences of those proteins with non-potential annotated coiled
coil domains (not obtained by homology). The resulting set of 350 sequences will be
referred to from now on asMc in the sequel. We also randomly extracted a bigger
set of 3500 sequences from de database. All the sequences in this set correspond to
proteins without references to coiled coil domains. We will refer to this set asMnc.
Note that given a domain, the absence of annotations for the domain does not mean that
the protein does not contain it, given that it is possible that the protein has not been
studied in that way.

The resulting sequences could be seen as strings in an alphabet over 22 symbols (20
amino acids plus the glutamic and aspartic acids). In order to reduce the alphabet as
much as possible without loss of information, three different codifications were consid-
ered. The first one considered the hidrophobic properties of the amino acids, classifying
them in two classes: hidrophobic and polar. The second one extends the first codifica-
tion considering also charge properties. The third codification is due to Dayhoff and has
been used previously in a related work [8]. This codification is based on some physical-
chemical properties of the aminoacids (acidity, aromaticity, hidrophobicity, among oth-
ers). Although the original one considers six classes (froma to f ) we have extended it
to consider the glutamic and aspartic acids as a new class.

In order to obtain grammatical models for the presence and absence of the domain
we usedgrammatical inference(GI) algorithms. These algorithms obtain, from a given
set of samples (strings), the decription of a formal language, that is, the description of a
potentially infinite set of related strings. GI algorithms could be obtained by considering
some desiderable algebraic properties of the words in the resulting language. Briefly,
thek-testable in the strict senselanguages (k-TSS) [9] could be obtained in this way by
considering segments of certain length. The inference algorithm fork-TSS languages
has been used successfully in several pattern recognition tasks (i.e. [10]).

Another approach to grammatical inference is based on the consideration of some
features of the training set. One example of this approach is theError-Correcting Gram-
matical Inferencealgorithm (ECGI) by Rulot [11]. Briefly, the algorithm uses a distance
measure in order to extend the initial (empty) language. The resulting language is not
characterizable, nevertheless, it accepts many closely related words to those in the train-
ing set. This algorithm has also been succesfully used in pattern recognition tasks (i.e.,
[12]).
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In this work, we used both algorithms to infer both the class of proteins that contains
a coiled coil motif and the class of proteins that does not contain such motifs. Once the
classes were obtained, we used the Viterbi algorithm (i.e., [13]) in order to obtain, for a
given protein sequence, the probability of belonging to each model.

3 Discussion

The same process is applied for each codification of the database. We extracted a train-
ing set fromMc andMnc and inferred a language using these sets (namelyTRc and
TRnc) and both algorithms exposed above. Test sets (TSc andTSnc) were extracted from
the database, and membership probabilities were obtained by using Viterbi’s algorithm.
The proteins were classified using a maximum probability criterion.

Each experiment involved the setMc and one subset ofMnc of 350 samples. There-
fore, we carried out ten rounds with disjoint sets of non-coiled proteins. In order to
obtain as much statistical relevance of the results as possible, seven different balanced
partitions of the data were considered in each round. The influence of the parameterk
was also studied.

In order to compare our results with the most known prediction algorithms [4, 5], it
is very important to note that the database contains annotations only for those proteins
that contain a coiled coil region. Our approach looks for modelling the presence and
absence of the coiled coil domain. Therefore, we have an important drawback because
of the lack of non-coiled annotations in the database. Thus, we think that the impor-
tance of the error rate has to be somewhat weighted. The error rate when classifying
coiled coil proteins should to be considered astrue error, but the error obtained when
classifying non-coiled coil proteins should be considered as a partially valid measure.

We run available versions of the algorithms ([14, 15] respectively). We fixed a
threshold in 0.5 and consider every protein that contains any amino acid with a proba-
bility over that threshold as a coiled one.

error rate
Lupas alg. Berger alg. k-TSS ECGI

Mc
18%

(63/350)
23.14% (81/350) 11.8% 15.5%

Mnc
11.14%

(390/3500)
0.3%

(11/3500)
20.2% 37.8%

Fig. 1.Comparison between algorithms. Thek-TSS languages were inferred withk = 12 and the
codification of four symbols. The ECGI approach considered the two symbols alphabet.

The best results were obtained when thek-TSS inference algorithm was used. The
lower value of thek parameter, the worse results obtained. This behaviour could be
explained by the main known feature of the coiled-coil domain (sequence of heptads).
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The ECGI algorithm obtained worse results than thek-TSS inference algorithm. The
ECGI algorithm is based on an error-correcting analysis, therefore, it is posible that the
error-correcting phase leaded to align coiled subsequences with other non-coiled ones.

Figure 1 show the results of the experimentation. Notice that thek-TSS inference
algorithm lead to best classification of theMc set, but with worse behaviour when the
setMnc is considered. ECGI algorithm produces worse results in any case.

Taking into account the above discussion, we consider the results very promising
and comparable to those obtained by traditional approaches. Of course, the availability
of non-coiled protein sequences should improve our results.

Coiled coil is a well characterized motif. Its structure is the key stone of the most
used prediction algorithms [4–6]. This work permits us to conjecture that other motifs,
whose structure is poorly known, could be detected by using grammatical inference
techniques.
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