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Abstract. In this note we solve a problem left open in [2]: namely, we
show that the iterated superposition of a regular language is regular. The
proof of this result is based on two facts: (i) the iterated superposition
of a language equals the restricted iterated superposition of the same
language, (ii) the sequence formed by iteratively applying the restricted
superposition can be precisely defined. We then define the restricted
superposition distance between a word and a language and prove that
this distance can be computed in time O(n2f(n)), where the language is
accepted in time O(f(n)) in the RAM model. Finally, we briefly discuss
the necessity of the n2 factor for the classes of regular and context-free
languages.

1 Introduction

A DNA molecule consists of a double strand, each DNA single strand being
composed of nucleotides which differ from each other by their bases: A (adenine),
G (guanine), C (cytosine), and T (thymine). The two strands which form the
DNA molecule are kept together by the hydrogen bond between the bases: A
always bonds with T, while C bonds with G. This paradigm of Watson-Crick
complementarity is one of the main concepts used in defining the formal operation
of superposition investigated in [2].

Two other biological principles used as sources of inspiration in that paper
are those of annealing and lengthening DNA by polymerase, respectively. The
first principle refers to fusing two single stranded molecules by complementary
base pairing while the second one refers to adding nucleotides to one strand (in a
more general setting to both strands) of a double-stranded DNA molecule. The
former operation requires a heated solution containing the two strands which
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is cooled down slowly. The latter one requires two single strands such that one
(usually called primer) is bonded to a part of the other (usually called tem-
plate) by Watson-Crick complementarity and a polymerization buffer with many
copies of the four nucleotides that polymerase will concatenate to the primer by
complementing the template.

We now informally explain the superposition operation and how it can be
related to the aforementioned biological concepts. Let us consider the following
hypothetical biological situation: two single stranded DNA molecules x and y
are given such that a suffix of x is Watson-Crick complementary to a prefix
of y or a prefix of x is Watson-Crick complementary to a suffix of y, or x is
Watson-Crick complementary to a subword of y. Then x and y get annealed in a
DNA molecule with a double stranded part by complementary base pairing and
then a complete double stranded molecule is formed by DNA polymerase. The
mathematical expression of this hypothetical situation defines the superposition
operation. Assume that we have an alphabet and a complementary relation
on its letters. For two words x and y over this alphabet, if a suffix of x is
complementary to a prefix of y or a prefix of x is complementary to a suffix
of y, or x is complementary to a subword of y, then x and y bond together
by complementary letter pairing and then a complete double stranded word is
formed by the prolongation of x and y. Now both words, namely the upper one,
formed by the prolongation of x, and lower one, formed by the prolongation of y,
are considered to be the result of the superposition applied to x and y. Of course,
all these phenomena are considered here in an idealized way. For instance, we
allow polymerase to extend the shorter strand in either end (3’ or 5’ in DNA
biochemistry) as well as in both, despite that in biology almost all polymerase
extend in the direction from 5’ to 3’.

As shown in [2], this operation resembles some other operations on words:
sticking investigated in [5,3,9] (particular polyominoes with sticky ends are com-
bined provided that the sticky ends are Watson-Crick complementary), PA-
matching considered in [7] which is related to both the splicing and the an-
nealing operations, and the superposition operation introduced in [1] (two words
which may contain transparent positions are aligned one over the other and the
resulting word is obtained by reading the visible positions as well as aligned
transparent positions). The reader interested in related bio-inspired operations
is referred to [8] and [6].

In this work we propose a slightly different variant of the operation consid-
ered in [2]. It turns out that both operations coincide when they are applied to
a language. This variant allows us to solve a problem left open in [2]: namely, we
show that the iterated superposition of a regular language is regular. The proof
of this result is based on two facts: (i) a sort of normal form which implies that
the iterated superposition of a language equals the restricted iterated superpo-
sition of the same language, (ii) the sequence formed by iteratively applying the
restricted superposition can be precisely defined. We then define the restricted
superposition distance between a word and a language and prove that this dis-
tance can be computed in time O(n2f(n)), where the language is accepted in
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time O(f(n)) in the RAM model. Finally, we briefly discuss the necessity of the
n2 factor for the classes of regular and context-free languages.

2 Preliminaries

We assume the reader to be familiar with the fundamental concepts of formal
language theory and automata theory, particularly the notions of grammar and
finite automaton [10].

An alphabet is always a finite set of letters. For a finite set A let card(A)
denote the cardinality of A. The set of all words over an alphabet V is denoted
by V ∗. The empty word is written ε; moreover, V + = V ∗ \ {ε} or equivalently
V + = V V ∗. Given a word w over an alphabet V , let |w| denote the length of w.
If w = xyz for some x, y, z ∈ V ∗, then x, y, z are called prefix, subword, suffix,
respectively, of w.

Let Ω be a “superalphabet”, that is an infinite set such that any alphabet
considered in this paper is a subset of Ω. In other words, Ω is the universe of the
languages in this paper, i.e., all words and languages are over alphabets that are
subsets of Ω. An involution over a set S is a bijective mapping σ : S −→ S such
that σ = σ−1. Any involution σ on Ω such that σ(a) �= a for all a ∈ Ω is said to
be here a Watson-Crick involution. Despite that this is nothing more than a fixed
point-free involution, we prefer this terminology since the superposition defined
later is inspired by the DNA lengthening by polymerase, where the Watson-Crick
complementarity plays an important role. Let · be a Watson-Crick involution
fixed for the rest of the paper. The Watson-Crick involution is extended to a
morphism from Ω∗ to Ω∗ in the usual way. We say that the letters a and a are
complementary to each other. For an alphabet V , we set V = {a | a ∈ V }. Note
that V and V can intersect and they can be, but need not be, equal. Remember
that the DNA alphabet consists of four letters, VDNA = {A, C, G, T }, which are
abbreviations for the four nucleotides and we may set A = T , C = G.

2.1 Non-iterated Superposition

Given two words x, y ∈ V + we define the following operations:

x � y = {uwv, uwv | x = uw, y = wv for some u, v ∈ V ∗, w ∈ V +}
x � y = {uwv, uwv | x = wv, y = uw for some u, v ∈ V ∗, w ∈ V +}
x�y = {uxv, y | y = uxv for some u, v ∈ V ∗}
x�y = {x, uyv | x = uyv for some u, v ∈ V ∗}.

Clearly, x � y = y � x and x�y = y�x for any pair of words x, y. Despite
this redundancy we prefer to work with these definitions because they allow a
simplification of the arguments we are to discuss.

We now define the superposition operation applied to the pair of words x, y ∈
V + as above, denoted by �, as follows:

x�y = (x � y) ∪ (x � y) ∪ (x�y) ∪ (x�y).
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The result of this operation applied to the two words x and y as above which
might be viewed as two single stranded molecules is the pair of words formed

by z and its complement z which form a double stranded molecule
z
z
. By this

operation, based on the Watson-Crick complementarity, we can generate a finite
set of words, starting from a pair of words, in which the contribution of a word to
the result need not be one subword, as happens in classical bio-operations of DNA
computing [8]. Note the difference between this operation and the superposition
operation defined in [2], where only the upper word is considered to be the result
of superposition.

We stress from the very beginning the mathematical character of the definition
proposed in [2]: nature cannot distinguish which is the upper or the lower strand
in the process of constructing a double stranded molecule from two single strands.
This drawback is avoided by the definition proposed here. Further, our model
reflects polymerase reactions in both 5’−→ 3’ and 3’−→ 5’ directions. Due to
the greater stability of 3’ when attaching new nucleotides, DNA polymerase can
act continuously only in the 5’−→ 3’ direction. However, polymerase can also
act in the opposite direction, but in short “spurts” (Okazaki fragments).

We extend this operation to languages by

L1�L2 =
⋃

x∈L1,y∈L2

x�y.

We write �(L) instead of L�L. It is plain that the superposition operation
proposed in [2] and that proposed here coincide when they are applied to a
language.

Note that superposition is not associative. Indeed, take the alphabet {a, b, a, b}
and the words x = ab, y = ba, z = aa. It is easy to see that (x�y)�z =
{abaa, abaa, aaba, aaba} while x�(y�z) = ∅.

2.2 Iterated Superposition

Given a language L we define the language obtained from L by unrestrictedly
iterated application of superposition. This language, called the unrestricted su-
perposition closure of L, is denoted by �∗

u(L) and defined by

�0
u(L) = L,

�i+1
u (L) = �i

u(L) ∪ �(�i
u(L)), i ≥ 0,

�∗
u(L) =

⋃

i≥0

�i
u(L).

Clearly, �∗
u(L) is the smallest language containing L and closed under super-

position. More precisely, it is the smallest language K such that L ⊆ K and
�(K) ⊆ K. In words, one starts with the words in L and applies superposition
iteratively to any pair of words previously produced. Note the lack of any re-
striction in choosing the pair of words. All the obtained words are collected in
the set �∗

u(L).
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We say that a family F of languages is closed under unrestrictedly iterated
superposition if �∗

u(L) is in F for any language L ∈ F .
We now recall from [2] another superposition closure of a language which

may be viewed as a “normal form” of iterated superposition. The restricted
superposition closure of L denoted by �∗

r(L) is defined in the following way:

�0
r(L) = L,

�i+1
r (L) = ((�i

r(L))�L) ∪ (�i
r(L))

�∗
r(L) =

⋃

i≥0

�i
r(L).

Note the main difference between the unrestricted and restricted way of it-
erating superpositions. In the latter case, superposition takes place between a
word produced so far and an initial word only.

3 Iterated Superposition Preserves Regularity

Note that �∗
r(L) ⊆ �∗

u(L) for any language L. Surprisingly enough (remember
that � is not associative), we have an equality between the two superposition
closures of any language.

Theorem 1. [Normal Form Theorem][2] �∗
r(L) = �∗

u(L) for any language L.

This theorem allows us to use the notation �∗ when the way of iterating the
superposition does not matter. The problem of closure under iterated superpo-
sition of the class of regular languages was left open in [2]. We propose here an
affirmative answer to this question. To this aim, we need some preliminary re-
sults. The redundancy introduced in the definition of the superposition operation
turns out to be useful now. For two languages L1, L2 we define

(i) � (L1, L2) =
⋃

x∈L1,y∈L2

x � y,

(ii) �0 (L1, L2) = L1,

(iii) �i+1 (L1, L2) = � ((�i (L1, L2)), L2), i ≥ 0,

(iv) �∗ (L1, L2) =
⋃

i≥0

�i (L1, L2).

The language �∗ (L1, L2) is defined analogously.

Lemma 1. For every language L and any integer k ≥ 1, the following relations
hold:

(�k
r (L)\L) =

⋃

0≤n+m<k

�n (�m (�(L), L), L) =
⋃

0≤n+m<k

�n (�m (�(L), L), L).
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Proof. We prove the first relation only; the second one can be easily proved
analogously. It is plain that

⋃

0≤n+m<k

�n (�m (�(L), L), L) ⊆ ((�k
r (L)) \ L).

Let w ∈ (�k
r (L) \ L), we prove that w ∈ �n (�m (�(L), L), L) for some 0 ≤

n + m < k by induction on k. The assertion is immediately true for k = 1. A
simple observation makes the assertion true for k = 2 as well. Indeed, it is clear
that ((x�y) ∪ (x�y)) ⊆ �(L) for any x ∈ �(L) and y ∈ L.

Let w ∈ �k+1
r (L) for some k ≥ 2; there exist x ∈ �k

r (L) and y ∈ L such that
w ∈ x�y. We distinguish four cases:

1. w ∈ x � y. By the induction hypothesis, x ∈ �n (�m (�(L), L), L) for some
0 ≤ n+m < k, hence w ∈ �n+1 (�m (�(L), L), L) with 0 ≤ n+1+m < k+1
holds.

2. w ∈ x � y. If x ∈ �0 (�m (�(L), L), L), then w ∈ �0 (�m+1 (�(L), L), L)
holds. Assume that x ∈ �n (�m (�(L), L), L) with n ≥ 1; it follows that
there exist u ∈ �n−1 (�m (�(L), L), L) and v ∈ L such that x ∈ u � v.
It further follows that {u, u} ⊆ �n+m

r . As n + m < k, we infer that �
({u, u}, y) ⊂ �k

r (L). Further, �({u, u}, y) ⊂ �k
r (L) (see also the next item)

and w ∈ s � v for some s ∈ � ({u, u}, y). By the induction hypothesis,
s ∈ �p (�q (�(L), L), L) holds for some 0 ≤ p + q < k, therefore w ∈ �p+1

(�q (�(L), L), L) with 0 ≤ p + 1 + q < k + 1 holds as well.
3. w ∈ x�y. This case immediately leads to w ∈ �k

r (L).
4. w ∈ x�y. This case immediately leads to w ∈ �k

r (L) and we are done.
�

A direct consequence of this lemma is the following corollary.

Corollary 1. For every language L, the following relations hold:

�∗
r(L) = �∗ (�∗ (�(L), L), L) ∪ L = �∗ (�∗ (�(L), L), L) ∪ L.

We still need one more result. We start with some additional notation. For
two words x, y we denote

x � 1
2

y = {uwv | x = uw, y = wv for some u ∈ V ∗
1 , w ∈ V +

1 , v ∈ V ∗
2 }

x � 1
2

y = {uwv | x = wv, y = uw for some u ∈ V ∗
2 , w ∈ V +

1 , v ∈ V ∗
1 }.

For two languages L1, L2 we define

(i) � 1
2

(L1, L2) =
⋃

x∈L1,y∈L2

x � 1
2

y,

(ii) �0
1
2

(L1, L2) = L1,

(iii) �i+1
1
2

(L1, L2) = � 1
2

((�i
1
2

(L1, L2)), L2), i ≥ 0,

(iv) �∗
1
2

(L1, L2) =
⋃

i≥0

�i
1
2

(L1, L2).

The language �∗
1
2

(L1, L2) is defined analogously.
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Lemma 2. For every language L the following relations hold:
1. �∗

1
2

(�(L), L ∪ L) = �∗ (�(L), L).

2. �∗
1
2

(�(L), L ∪ L) = �∗ (�(L), L).

Proof. We prove the first relation only; the second one can be shown analogously.
We first consider the inclusion �∗

1
2

(�(L), L ∪ L) ⊆ �∗ (�(L), L).

Let w ∈ �k
1
2

(�(L), L∪L); the inclusion immediately holds for k = 0. Assume

w ∈ �k+1
1
2

(�(L), L ∪ L), there exist x ∈ �k
1
2

(�(L), L ∪ L) and y ∈ (L ∪ L) such
that w ∈ x � 1

2
y. If y ∈ L, then w ∈ �∗ (�(L), L) by the induction hypothesis.

If y ∈ L, then y ∈ L and w ∈ x � y which concludes the proof of this part as
soon as we note that x ∈ �∗ (�(L), L).

Conversely, let w ∈ �k (�(L), L). The converse inclusion holds for k = 0.
Assume w ∈ �k+1 (�(L), L); there exist x ∈ �k (�(L), L) and y ∈ L such that
w ∈ x � y. If w = uwv, where x = wv, y = uw, then w ∈ �∗

1
2

(�(L), L ∪ L).

If w = uwv, where x = wv, y = uw, then w ∈ x � 1
2

y. Since y ∈ L and
x ∈ �k (�(L), L), hence x ∈ �∗

1
2

(�(L), L ∪ L) by the induction hypothesis. The
proof is now complete. �

Corollary 2. For every language L, the following relations hold:

�∗
r(L) = �∗

1
2

(�∗
1
2

(�(L), L ∪ L), L ∪ L) ∪ L = �∗
1
2

(�∗
1
2

(�(L), L ∪ L), L ∪ L) ∪ L.

We are now ready to prove one of the main results of this note.

Theorem 2. �∗(L) is always regular for any regular language L. In other words,
the class of regular languages is closed under iterated superposition.

Proof. We start by recalling a result proved in [2], namely �(L) is regular for
every regular language L. By the previous corollary, it suffices to prove that
�∗

1
2

(E, L ∪ L) is regular provided that E is regular.
Let L ⊆ V ∗ be a regular language; we assume that the deterministic finite

automaton A = (Q, V, δ, q0, F ) accepts L ∪ L. For every state q ∈ Q we de-
fine the regular language R(q) = (V ∪ V )∗{w | w ∈ V +, δ(q0, w) = q} ac-
cepted by the (not necessarily deterministic) finite automaton A(q) = (Q(q), V ∪
V , δ(q), s

(q)
0 , {s

(q)
f }). Note that all automata A(q), q ∈ Q, have a single final state.

We now define the following left-linear grammar G = (N, V ∪ V ∪ {ZX | X ⊆
(Q(q) × Q(q)), q ∈ Q}, S, P ), where

N = {S} ∪ (
⋃

q∈Q

{[X, q], [X, q, q′] | X ⊆ (Q(q) × Q(q)), q′ ∈ Q})

∪(
⋃

q∈Q

{〈X, q〉, 〈X, q, q′〉 | X ⊆ (Q(q) × Q(q)), q′ ∈ Q}).

The set of productions P contains the following rules (each set of rules is
accompanied with some explanations):
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1. For every q ∈ Q, we add the complement of w as the suffix to the current word
provided that δ(q, w) ∈ F and the current word lies in R(q). We memorize
to check the last condition in the pair (s(q)

0 , s
(q)
f ) which must be completed

to obtain a non-deterministically guessed correct recognition.

S → [{(s(q)
0 , s

(q)
f )}, q] for all q ∈ Q, X ⊆ (Q(q) × Q(q))

[X, q] → [X, q, q′]a, if δ(q′, a) ∈ F, for all q, q′ ∈ Q, X ⊆ (Q(q) × Q(q))
[X, q, q′] → [X, q, q′′]a, if q′ ∈ δ(q′′, a), for all q, q′, q′′ ∈ Q, X ⊆ (Q(q) × Q(q))
[X, q, q] → X for all q ∈ Q, X ⊆ (Q(q) × Q(q)).

2. For every q ∈ Q, we add the complement of w as the suffix to the current
word provided that δ(q, w) ∈ F and the current word lies in R(q). Beside
memorizing to check the last condition in the pair (s(q)

0 , s
(q)
f ) as above we

simultaneously continue guessing the appropriate paths in all automata A(q′)

for q′ ∈ Q.

X → 〈X, q〉 for all q ∈ Q, X ⊆ (Q(q) × Q(q))
〈X, q〉 → 〈X ′, q, q′〉a, where

– δ(q′, a) ∈ F ,
– if (s(r), t(r) ∈ X for some r ∈ Q, then X ′ contains one pair (s(r), p(r))

such that t(r) ∈ δ(r)(p(r), a),

〈X, q, q′〉 → 〈X ′, q, q′′〉a, where

– δ(q′′, a) = q′,
– if (s(r), t(r) ∈ X for some r ∈ Q, then X ′ contains one pair (s(r), p(r))

such that t(r) ∈ δ(r)(p(r), a),

〈X, q, q〉 → X ∪ {(s(q)
0 , s

(q)
f )}.

3. X → ZX .

We claim �∗
1
2

(E, L ∪ L) = s(L(G)), where s is a substitution s : (V ∪ V ∪ {ZX |
X ⊆ (Q(q) × Q(q)), q ∈ Q})∗ −→ 2(V ∪V )∗

defined by s(a) = a for any a ∈ V ∪ V
and

s(ZX) = {w ∈ (V ∪ V )∗ | ∀q ∈ Q, ∀(s(q), t(q)) ∈ X, t(q) ∈ δ(q)(s(q), w)} ∩ E.

For s is a substitution by regular languages, it follows that the language �∗
1
2

(E, L ∪ L) is regular. �
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4 Restricted Superposition Distance

In this section we discuss the following problem: Given a language L and a
word w ∈ �∗

r(L), compute the minimal value i such that w ∈ �i
r(L). To this

aim, we first recall a well-known problem whose solution will be useful, namely
the so-called Range Minimum (Maximum) Query Problem: Given an array A
with entries over a totally ordered set can we preprocess A (i.e., produce some
additional data structures), such that we can answer efficiently queries like
RmQA(i, j) = argmini≤t≤jA[t] or RMQA(i, j) = argmaxi≤t≤jA[t]? In both
cases, when there is a tie, the leftmost possible value is returned. Harel and
Tarjan [4] proposed a solution for this problem such that, if A has n elements,
then the preprocessing is performed in time O(n) (and a data structure of size
O(n), called RmQ or RMQ, respectively, is produced), while the answer to any
query can be obtained in time O(1).

Note that in the following we will use the word “derivation” with the meaning
“application of the Watson-Crick superposition”.

Theorem 3. Let L be a language over the alphabet V accepted in time O(f(n))
on the RAM model, and w ∈ V ∗. One can compute the minimum value i such
that w ∈ �i

r(L) in time O(|w|2f(|w|)).

Proof. Let i be the minimum value such that w ∈ �i
r(L). It follows that there

exists the sequence w0, w1, . . . , wi, such that w0 ∈ L, wi = w, and wt ∈ (wt−1 ◦t

zt), where ◦t ∈ {�, �, �, �} and zt ∈ L, for all t ∈ {1, . . . , i}. It is clear that both
wt and wt, for all t ≥ 1, can be obtained in t steps starting from w0. Without
loss of generality, we may assume that w0 is a subword of w. By Lemma 1,
we may further assume that ◦1 ∈ {�, �, �, �} and ◦t =�, 2 ≤ t ≤ p, ◦t =�,
p + 1 ≤ t ≤ i, for some 1 ≤ p ≤ i. Note that no operation � or � is applied
when p = 1 or p = i, respectively. Moreover, by the proof of Lemma 1 we may
assume that ◦t =� for all 2 ≤ t ≤ i provided that ◦1 =�.

We now focus our discussion on the way the words from L on which we
can apply these operations could be identified. The idea is quite simple, and it
corresponds to a greedy strategy: in the first step we identify all the subwords of
w that are words in L. Then, we add to these words all the subwords of w that
can be obtained from the words got in the first step using the � and � operations
together with their complements. Then, we try to obtain w starting from each of
these words, and compute the minimum number of operations needed to do this.
Consequently, we proceed as follows: if the current word is not a prefix of w, or
the complement of such a prefix, we choose a word from L which we can apply
the operation � to, such that at least one of the obtained words is a subword
of w and the length of this word is maximal among all the words that can be
obtained by applying the � operation to the current word.

If the current word is a prefix of w, then we choose a word from L which we
can apply the operation � to, such that at least one of the words we obtain is a
subword of w and the length of this word is maximal between all the words that
can be obtained by applying the � operation to the current word.
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It is plain that this strategy that is actually dynamic programming works
as the new current word is always a subword of w. In the following, we show
how this strategy can be implemented in time O(n2f(n)). If the input word w
belongs to �∗

r(L), then the algorithm outputs the minimal i such that w ∈ �i
r(L),

otherwise it outputs ∞. Data structures used by the algorithm are:

– The 2-dimensional arrays M , C, T , CT , D and N , with |w| rows and
columns.

– The 1-dimensional arrays Left, Right, CLeft and CRight, with |w| posi-
tions. The values stored in these arrays are initially set to 0.

– The queue Q that is initially empty.

Algorithm 1
function Distance(w, L);
begin
n := |w|;
for l = 1 to n do

for i = 1 to n − l + 1 do
j = i + l − 1;
if w[i..j]∈L then M [i][j]=1; Right[i]=j, Left[j]= i;

Add ([i, j], 1, 0) to Q, D[i][j]=1;
endif
if w[i..j] ∈ L then C[i][j] = 1, CRight[i] = j, CLeft[j] = i;

endfor
endfor
if (D[1][n] = 1) then return 0;
for l = 1 to n do

for i = 1 to n − l + 1 do
j = i + l − 1;
CT [i][j] = max{C[i][j], CT [i − 1][j], CT [i][j − 1]};
T [i][j] = max{M [i][j], T [i − 1][j], T [i][j − 1]};
if (C[i][j] = 1 & T [i][j] = 1 & D[i][j] �= 1) then Add ([i, j], 1, 1), ([i, j], −1, 1) to Q,

N [i][j] = 1, D[i][j] = 1;
endif
if (M [i][j] = 1 & CT [i][j] = 1 & N [i][j] �= 1) then Add ([i, j], −1, 1) to Q,

N [i][j] = 1;
endif

endfor
endfor
Compute the RmQ data structures for the arrays Left, CLeft;
Compute the RMQ data structures for the arrays Right,CRight;
b = false

while (b = false & Q not empty) do
Extract ([i, j], x, k) from Q

if (x = 1 & i �= 1) then
t = RmQCLeft(i, j);
if D[t][j] �= 1 then Add ([t, j], 1, k + 1) to Q, D[t][j] = 1;
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if N [t][j] �= 1 then Add ([t, j], −1, k + 1) to Q, N [t][j] = 1;
endif
if (x = 1 & i = 1) then

t = RMQCRight(i, j);
if D[i][t] �= 1 then Add ([i, t], 1, k + 1) to Q, D[i][t] = 1;
if N [i][t] �= 1 then Add ([i, t], −1, k + 1) to Q, N [i][t] = 1;

endif
if (x = −1 & i �= 1) then

t = RmQLeft(i, j);
if D[t][j] �= 1 then Add ([t, j], 1, k + 1) to Q, D[t][j] = 1;
if N [t][j] �= 1 then Add ([t, j], −1, k + 1) to Q, N [t][j] = 1;

endif
if (x = −1 & i = 1) then

t = RMQRight(i, j);
if D[i][t] �= 1 then Add ([i, t], 1, k + 1) to Q, D[i][t] = 1;
if N [i][t] �= 1 then Add ([i, t], −1, k + 1) to Q, N [i][t] = 1;

endif
if (D[1][n] = 1) then b = true;

endwhile;
if (D[1][n] = 1) then find in Q the first tuple ([1, n], 1, i), ∀i; return i;
else return ∞;

end.;

Informally, the algorithm works as follows:

– First, the subwords of w that are words from L are identified. If w[i..j] is
such a word then we insert the item ([i, j], 1, 0) in the queue Q. These are the
only words that can be obtained from a subword of w in 0 derivation steps.
Also, we use the arrays Left (and CLeft) to store the starting position in w
of the longest word from L (respectively L) ending on a certain position in
w, while the arrays Right (and CRight) are used to store the ending position
of the longest word from L (respectively L) starting on a certain position.

– Then, we identify the words that can be obtained from a subsequence of w
using a single application of the rules �, �: if w[i..j] can be obtained we add
([i, j], −1, 1) to Q, if w[i..j] can be obtained we add ([i, j], 1, 1) to Q.

– Finally, using the queue Q (in which the tuples ([i, j], x, k) are ordered in-
creasingly according to the value k), we try to obtain new words (actually,
the longest words) that can be derived from a subword of w, and still remain
subwords of w or w. Each time when a new item ([i, j], 1, k) is extracted from
Q we try to extend it as much as possible to the left (if i �= 1), or to the
right (if i = 1), and add items corresponding to the newly obtained words to
the queue. The same strategy is used in the case when an item of the form
([i, j], −1, k) is extracted from Q.

– The algorithm ends in two situations (i) no more words can be obtained and
w was not obtained yet, when it returns ∞, (ii) w was obtained, when it
returns the minimum number of derivation steps used to obtain this word.
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It is clear that the first two for cycles can be executed in O(n2f(n)) time, while
the next two ones can be executed in O(n2) time. Next, Q contains an item with
the first component [i, j] at most two times during the computation, thus the
maximum number of elements that may enter in Q is O(n2). Consequently, the
while cycle is executed at most O(n2) times and every computation done in this
cycle is executed in constant time. This shows that the overall time complexity
of the above algorithm is O(n2f(n)). The space needed by this algorithm is
O(n2S(n)), given that L is accepted by a RAM in O(f(n)) time and O(S(n))
space. �

It is clear that using some preprocessing which replaces the part of the algorithm
consisting of the first two for cycles we can obtain an overall complexity of O(n2)
time and O(n2) space for regular languages. In the case of context-free languages
we can obtain an overall complexity of O(n3) time, using the Cocke-Younger-
Kasami algorithm in the preprocessing phase, and O(n2) space.

As a corollary of the previous theorem we can state:

Theorem 4. The class P is closed under iterated superposition.
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