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Abstract. The rapid growth of protein sequence databases is exceeding
the capacity of biochemically and structurally characterizing new pro-
teins. Therefore, it is very important the development of tools to locate,
within protein sequences, those subsequences with an associated func-
tion or specific feature. In our work, we propose a method to predict one
of those functional motifs (coiled coil), related with protein interaction.
Our approach uses even linear languages inference to obtain a transduc-
tor which will be used to label unknown sequences. The experiments
carried out show that our method outperforms the results of previous
approaches.

Keywords: Grammatical inference, bioinformatics, protein motif
location.

1 Introduction

Processing of biological data is a key task in many applied fields. Recently, an
explosion of papers apply Pattern Recognition techniques to bioinformatics tasks
[1,2]. Formal Language Theory and Grammatical Inference (GI) are also playing
an important role and it is expected that they could lead to good applied results
[3,4]. Some works use GI techniques in order to address, among other tasks:
secondary structure identification [5], protein motifs detection [6,7,8], optimal
consensus sequence discovery [9,10] or gene prediction [11].

The selection of proteins with certain characteristics from genomic sequences
is a central goal of computational biology. One aspect of this problem is to
detect certain subsequences, known as domains or motifs, with some interesting
functional features.

Coiled coil domains are of interest for molecular biologists studying a variety
of processes such as protein transportation and interaction. It has been shown
that coiled coil motif is implied in membrane fusion and the infection of cells by
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viruses or parasites [12][13]. Predictions based on analysis of primary sequences
suggest that approximately 2-3% of all protein residues form coiled coils [14].

The coiled coil motif consist of two α-helices wrapping around each other
forming a supercoil. The sequences of coiled coils are made of seven-residue
(amino acids) repeats which forms a pattern usually denoted (abcdefg)n where
the position of each residue is noted from a to g. Within this pattern, called
also heptad, generally an hydrophobic core occurs every four and then three
residues apart, that is, at positions a and d. The interaction between two α-
helices in a coiled coil involves these hydrophobic residues. The result is a highly
versatile protein interaction mechanism (see Figure 1). Due to its simplicity
and regularity, the coiled coil is one of the most extensively studied protein
motifs.

Fig. 1. A schematic coiled coil representation is shown. The relative position of amino
acids in a characteristic coiled coil heptad repeat is marked with bullets. Residues
at the a and d positions are predominantly hydrophobic. Due to the α-helical struc-
ture, residues at the a and d position are spatially close one each other. Both fea-
tures (hydrophobicity and spatial arrangement), provide a versatile protein interaction
mechanism.

Several programs for predicting coiled coil domains have been proposed. The
most relevant to large-scale annotations are coils [15] (probably the most widely
used), paircoil [16] and multicoil [14]. All these programs are based on the pro-
bability of appearance of every amino acid in each position of the characteristic
heptad, extracted from known coiled coil motifs. Multicoil is the most special-
ized one, and aims to detect double or triple coiled coil domains. All of them
are based on a Position Specific Scoring Matrix (PSSM) (also known as Position
Weighted Matrix) approach [17]. This general scheme considers the probabili-
ties of appearance of each possible residue in each position of the motif. These
probabilities are obtained from sequences with confirmed motifs or considering
multiple sequence alignments of functionally related sequences. This approach
has also been widely used in gene-finding tasks.

The work by Lupas et al. [15] takes into account that even very short proteins
have stable coiled coils containing four or five heptads, and analyzes the test
sequences using a sliding window of 28 amino acids. A score for each amino
acid in the sequence of the protein is obtained using the probabilities of the
PSSM. Then, the score distributions for general globular proteins and coiled coil
sequences are approximated with Gaussian curves used to obtain, for each amino
acid of the protein, a probability of belonging to a coiled coil motif.
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Although this approach is widely known by the biological community, it is
known that the method leads to a significant number of false positives, some of
them due to the continuous appearance of some frequent amino acids in coiled
coil regions (for instance, (Lys − Lys − Lys)n scores highly though it is not
a coiled coil). To solve this problem, Berger et al. [16] follow the same PSSM
approach but taking into account the pairwise amino acid correlations in known
coiled coils. The correlations and the size of the window used were empirically
selected, and,

– the correlations between the pairs of amino acids placed in positions (i,i+1)
and (i,i + 4) were considered.

– the size of the sliding window was set to 30.

The authors claim that the approach is useful to discard false positives de-
tected by the Lupas’ approach. They carry out a wide experimentation to show
the behaviour and present several examples of false positives detected.

Nevertheless, the problem of locating general coiled coil motifs still remains
open. Several authors have noted several important coiled-proteins that are not
detected when the previous methods are used (among others, fusion-membrane
proteins of the human and simian inmunodeficiency virus or Ebola virus [18]).
Thus, several other works propose solutions for more specific instances of the
problem [19][18].

In our work, we use a grammatical approach to locate coiled coil motifs within
protein sequences. Previous related works address the task of detecting protein
structures: α-helix structures in protein sequences [20] or even the coiled coil
motif [7,8].

We address the problem of predicting the coiled coil motifs of a given pro-
tein. Our approach considers the original sequence and an annotated reduced
version which distinguish between coiled coil and non-coiled coil subsequences.
This data is combined into an even linear structure and used to infer Even Linear
Languages (ELL). The inferred languages are then used to build a transductor
suitable to translate, that is, to distinguish coiled and non-coiled regions in prob-
lem sequences. The results of the experimentation carried out are compared with
other existing approaches. Our work is organized as follows: Section 2 summa-
rizes some definitions and the notation used; Section 3 explains our approach
to the problem; Section 4 shows the experimental results and the indexes used
to compare our results with previous ones; Finally, some conclusions and future
lines of research end the paper.

2 Notation and Definitions

Let Σ be an alphabet and Σ∗ the set of words over the alphabet. For any word
x ∈ Σ∗ let xi denote the i-th symbol of the sequence, let |x| denote the length of
the word and let xr denote the reverse of x. Let also λ denote the empty word.
A grammar is denoted by G = (N, Σ, P, S) where N and Σ are the auxiliar and
terminal alphabets, P is the set of productions and S ∈ N is the initial symbol
or axiom. The language generated by G is denoted by L(G).
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An Even Linear Grammar (ELG) is a context-free grammar [21] where the
productions are of the forms:

A → xBy where A, B ∈ N , x, y ∈ Σ∗ and |x| = |y|
A → x where A ∈ N , x ∈ Σ∗

The class of Even linear Languages (ELL) is a subclass of the context free
languages and includes properly the class of regular languages. Given an ELG,
it is possible to obtain an equivalent one where the productions are of the form.

A → aBb where A, B ∈ N , a, b ∈ Σ
A → a where A ∈ N , a ∈ Σ ∪ {λ}

The learning of ELL can be reduced to the inference of regular languages [22].
The general algorithm consists in transforming the training strings through a
function σ : Σ∗ → [Σ × Σ]∗ ∪ [Σ]∗ defined as follows:

σ(λ) = λ
σ(a) = [a] where a ∈ Σ
σ(axb) = [ab]σ(x) where a, b ∈ Σ and x ∈ Σ∗

Once applied the function σ, it is possible to use any regular language in-
ference algorithm to learn a language over the alphabet [Σ × Σ]∗ ∪ [Σ]∗ and
then transform the productions of the obtained regular grammar to undo the
transformation σ as follows:

∀A → [ab]B ∈ P add the production A → aBb to the ELG
∀A → [a] ∈ P add the production A → a to the ELG
∀A → λ ∈ P add all these productions to the ELG

Obviously, whenever the GI algorithm identifies a subclass of regular lan-
guages, then a subclass of ELL is obtained.

A finite state transducer is defined by a system τ = (Q, Σ, Δ, q0, QF , E) where:
Q is a set of states, Σ and Δ are respectively the input and output alphabets, q0
is the initial state, QF ⊆ Q is the set of final states and E ⊆ (Q×Σ∗ ×Δ∗ ×Q)
is the set of transitions of the transducer. A successful path in a transducer is a
sequence of transitions (q0, x1, y1, q1), (q1, x2, y2, q2), . . . , (qn−1, xn, yn, qn) where
qn ∈ QF and for 1 ≤ i ≤ n: qi ∈ Q, xi ∈ Σ∗ and yi ∈ Δ∗. Note that a path can
be denoted as (q0, x1x2 . . . xn, y1y2 . . . yn, qn) whenever the sequence of states are
not of particular concern. A transduction is defined as a function t : Σ∗ → Δ∗

where t(x) = y if and only if there exist a successful path (q0, x, y, qn). We refer
the interested reader to [23].

3 Grammatical Inference Approach to Coiled Coil
Prediction

Several methods have been proposed to solve the coiled coil motif location task.
The most widely known are the PSSM-based methods by Lupas and Berger
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[15,16], but also Hidden Markov Models have been used [24] as well as Neural
Networks approaches [25]. This motif occurs always on an underlying α-helix
protein structure. It is important to note, on the one hand, that the detection
of α-helix structure has been successfully addressed by GI methods [20], and
in the other hand, the biological regularity of the coiled coil pattern (that is,
the characteristic repeated heptad). This two facts support our GI approach to
tackle this task.

In our work we address the protein motif location problem as a transduc-
tion problem. In such a way that, given an amino acid sequence, we propose
a method to obtain a sequence with the same length which distinguishes be-
tween those amino acids within a motif and those that are not. The inference of
transducers has been widely studied by the GI community, in our work, we take
into account the special features of our problem to propose a method based on
inference of ELL. Our approach firstly transforms the available data to obtain a
training set with even linear structure. This set was used to infer an ELL. The
transducer is obtained using the structure of the ELG inferred. To do so, note
that, given a ELG G = (N, Σ, P, S) that does not contain productions of the
form A → a, a ∈ Σ, it is possible to obtain a transducer τ = (N, Σ, Σ, S, QF , E)
where:

QF = {A ∈ N : (A → λ) ∈ P}
E = {(A, a, b, B) : (A → aBb) ∈ P}

Example 1 shows how this transformation work.

Example 1 Given the ELG G = (N, Σ, P, S) with the productions:

S → aS0 | bB1
A → aA1 | bS0
B → aA1 | bB1 | λ

then, the transducer τ = (N, Σ, Σ, S, {B}, E) is obtained where:

E =
{

(S, a, 0, S), (S, b, 1, B), (A, a, 1, A),
(A, b, 0, S), (B, a, 1, A), (B, b, 1, B)

}

The resulting transducer is shown in Figure 2.

b/0

a/1b/1a/0

a/1b/1 ABS

Fig. 2. A three states transducer example. A label x/y denotes that the transition
symbol is x with output y. For instance, the transduction of baabaab is 1110001

�
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As we stated before, the learning problem for ELL can be reduced to the
problem of learning regular languages. In our work, in order to learn the ELL,
we use an algorithm to infer k-testable in the strict sense (k-TSS) languages
[26,27,5]. The class of k-TSS languages is contained into the regular languages
class and it is characterized by the set of segments of length k that appear in the
words of the language. The characteristic coiled coil heptad lead us to consider
this algorithm as a first suitable candidate.

Our approach considered a set of protein sequences P with known coiled coil
motifs and another set L of strings over Δ = {c, n} with, a labeled sequence
lx for each sequence x in P . The labeled sequence was obtained in such a way
that distinguish between the amino acids corresponding to coiled and non-coiled
regions. That is, given the string x = x1x2 . . . xn ∈ P and its corresponding
labeled string lx = l1l2 . . . ln ∈ L, li = c whenever xi correspond to a coiled coil
motif, otherwise li = n.

These sets were combined to obtain another set M with the strings xlrx. Note
that the strings in this set have an even linear structure and even length. The
set M was used to obtain a transducer by ELL inference. The general method
is summarized in Algorithm 3.1.

Algorithm 3.1. Coiled coil Grammatical Inference approach.
Input:

– A set P of amino acid sequences with known coiled coil motifs.
– A set L of motif labeled sequences. Each string x in P has its corresponding

string lx in L.
Output:

– A transducer to locate coiled coil motifs.
Method:

– Combine the sets P and L to obtain the training set M with strings xlrx
– Apply to the strings in M the transformation function σ
– Apply a GI algorithm for (a subclass of) regular languages
– Undo the transformation σ to obtain the ELG from the regular language
– Return the transducer obtained from the ELG

EndMethod.

The returned transducer can be used to analyze problem sequences to ob-
tain the corresponding transduction. Note that the transducer may be non-
deterministic and the test sequences may not belong to the language accepted
by the transducer. Therefore, an error-correcting parser (for instance Viterbi’s
algorithm) is necessary to analyze the test sequences. We used a standard con-
figuration of Viterbi’s algorithm when a GI approach is applied to pattern recog-
nition tasks (i.e. [8]). We considered the number of times each transition of the
transducer is used to probabilize it. The error-correcting analysis considered only
low probability substitution errors for edit operations.
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4 Experimental Results

In order to test our approach we considered two different datasets: The first one
contains sequences extracted from SwissProt Database (release 40, April 2003)
[28]. All the sequences selected contain a non-potential coiled coil annotation.
Potential annotations are those based mainly on homology results. Potential mo-
tifs were not included in the database because the function of potential domains
has not been yet assured. The resulting 350 sequences database has been previ-
ously used by [7,8]. The second coiled coil dataset was build by Delorenzi and
Speed [24]. This dataset considered sequences of Protein Data Bank [29]. This
database contains structural information of the tertiary structure of the proteins
and it is more suitable to obtain confident information. From the information
stored in the database, two sets were built: one with those coiled coil sequences
with experimental confirmation (397 sequences), and another with sequences
from which coiled coils motifs were eliminated (1525 sequences).

Protein sequences can be considered as strings in an 22 symbols alphabet (20
amino acids plus the glutamic and aspartic acids1). In order to reduce the alpha-
bet size without loss of information, two different codifications were considered.
The first one is due to Dayhoff and is based on some properties of the amino
acids. This codification has been previously used in some GI papers [20,7,8].
Second codification used considers only two symbols which distinguish between
hydrophobic and polar amino acids. This codification was used because this fea-
ture is key in the coiled coil motif. Figure shows the correspondence of each
amino acid for both codifications.

amino acid P/H Dayhoff
C p a

R, H, K, p d
D, E p c
N, Q p c
B, Z p g
Y p f
G p b

S, T p b
A, P h b
F, W h f

L, V, M, I h e

Fig. 3. Amino acid codifications

Several measures are suitable to evaluate the results. Some of them are re-
viewed in [30] under a scope of gene-finding problems. Nevertheless, they are
1 Some sequences also contain the symbol X. This happens whenever it is not clear

which amino acids occupy a certain position. In this work, we did not consider such
sequences (just one sequences in the first dataset and two sequences in the second).
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suitable to be applied to motif location tasks. Among all the measures proposed,
Sensitivity and Specificity are probably the most used. Sensitivity (Sn) measures
the probability of predict those symbols inside a motif. Specificity (Sp) measures
the probability of predicted segments to be actually motifs.

These measures are computed using the following partial results:

True Positives (TP): symbols of the sequence inside a motif that are correctly
annotated.

True Negatives (TN): symbols of the sequence outside a motif that are cor-
rectly annotated.

False Positives (FP): symbols of the sequence outside a motif that are anno-
tated as they were inside one.

False Negatives (FN): symbols of the sequence inside a motif that are not
correctly annotated.

Using these measures, both Sn and Sp can be computed as follows:

Sn =
TP

TP + FN
Sp =

TP

TP + FP

Note that neither Sn nor Sp alone constitute a good measure. The Correlation
Coefficient (CC) is defined in order to use a single value that summarizes both
results. It can be computed as follows:

CC =
(TP · TN) − (FN · FP )√

(TP + FN) · (TN + FP ) · (TP + FP ) · (TN + FN)

Although CC has some statistical properties [30] it has also an undesirable
drawback. It is not defined when any factor of the root is zero. Some measures
have been defined to overcome this inconvenient, we will use the Approximate
Correlation (AC) which is defined as follows:

AC =
{

1
4

[
TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN

]
− 0.5

}
· 2

In order to evaluate the results, it has to be noted that, for some samples,
it was not possible to calculate Sp and CC, and therefore, these samples were
not taken into account. The Approximate Correlation AC considers all samples,
including those for which it was not possible to calculate CC or Sp. This can ex-
plain why in some cases the difference between AC and CC is relevant. This fact
makes AC the most reliable measure in order to evaluate the global performance
of our approach.

In order to test our approach, both datasets were processed using the same
scheme. We considered several values of the GI algorithm k parameter, and
performed a leaving-one-out experiment (all the sequences but one were used to
infer the transducer and the remaining one to test the performance. This process
is iterated to consider the whole dataset).
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Our results are also compared with the output of coils and paircoil methods.
Note that these methods are based on the physic-chemical properties of the coiled
coil motif, therefore, no training is needed. Public versions of these programs are
available at [31] and [32] respectively. Both approaches use a default probability
threshold of 0.5. This threshold has to be reached to consider an amino acid
as belonging to a coiled coil motif. Note that to lower this threshold implies an
increasing of the sensibility and a decreasing of the specificity levels. In the same
way, to higher the default parameter implies an increasing of the sensibility but
a decreasing of the sensibility levels. We are interested in the general behaviour,
therefore, we will consider the default threshold value.

The two symbols codification did not obtain significant results, thus, we will
show only the best configuration performance for this codification. The results
obtained by the subset of SwissProt database are shown in Table 1.

Table 1. Experimental results when the coiled subset of SwissProt was used. Note
the improvement of the results obtained by our method. Although bigger k parameter
values lead to higher sensitivity, best results are obtained by using k = 8.

Method Sn Sp CC AC
coils 0.4568 0.8022 0.4897 0.4155

paircoil 0.4996 0.8209 0.5676 0.4806

IGcoils
(Dayhoff coding)

k = 2 0.7865 0.7226 0.6355 0.5480
k = 3 0.8287 0.7610 0.6799 0.6365
k = 4 0.8095 0.8491 0.7547 0.7164
k = 5 0.7688 0.9563 0.8741 0.7728
k = 6 0.8527 0.9804 0.9291 0.8638
k = 7 0.9180 0.9701 0.9420 0.9085
k = 8 0.9506 0.9673 0.9529 0.9338
k = 9 0.9696 0.9614 0.9498 0.9428
k = 10 0.9710 0.9624 0.9479 0.9457

IGcoils (P/H coding) k = 8 0.6526 0.7887 0.6113 0.5174

The experimental results when the Delorenzi database was used are shown in
Table 2. Note that in this experiment, the lower values of the inference parameter,
the worse values of the sensitivity and specificity. Nevertheless, considering the
correlation coefficient (or the approximate correlation as well), our approach
improves the results.

One of the most important drawbacks of the Lupas’ method is the number
of false positives that it produces. Berger et al. considered this fact as their
main motivation to develop their approach. In order to compare the perfor-
mance of our method when non-coiled sequences are to be tested, we carried
out the following experiment: two transducers were inferred, each one consider-
ing all the sequences of the two different datasets (i.e. the coiled coil SwissProt
subset and the Delorenzi dataset). The sequences of the non-coiled dataset where
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Table 2. Experimental results when the coiled Delorenzi’s database was used. Best
results were obtained for k = 7 and k = 8. This result is consistent with the heptad-
based biological characterization of the motif.

Method Sn Sp CC AC
coils 0.6688 0.8552 0.6372 0.6222

paircoil 0.6511 0.8489 0.6693 0.5972

IGcoils
(Dayhoff coding)

k = 2 0.6269 0.7420 0.6501 0.5058
k = 3 0.6353 0.7616 0.6730 0.5342
k = 4 0.6275 0.7778 0.6793 0.5654
k = 5 0.5709 0.8249 0.6842 0.5729
k = 6 0.5262 0.8730 0.7395 0.5692
k = 7 0.5465 0.9212 0.8128 0.5952
k = 8 0.6058 0.9002 0.8036 0.6356

IGcoils (P/H coding) k = 8 0.4012 0.8001 0.6020 0.3883

Table 3. Experimental results when the non-coiled dataset was processed. Upper two
rows show the percentage of symbols predicted inside a coiled coil motif (error rate).
Lower rows show the number of sequences in the non-coiled dataset with any erroneous
prediction. All this results were obtained with the Dayhoff coding.

IGcoils
Coils Paircoil

k = 6 k = 7 k = 8

% error rate
SwissProt dataset 0.0118 0.0175 0.0254

0.0058 0.0023
Delorenzi dataset 0.0036 0.0030 0.0016

# of erroneous
sequences

SwissProt dataset 104 123 140
57 12Delorenzi dataset 26 18 12

then independently tested considering this two transducers, and two measures
were work out: the error percentage and the number of sequences with a motif
predicted. Note that these sequences were processed to delete all the coiled coil
motifs, therefore, all the coiled coil predictions are erroneous. The results ob-
tained with the two symbols codification were not significant, therefore, we only
show the results (summarized in table 3) obtained when the Dayhoff coding was
used.

The results obtained by transducers inferred with the SwissProt dataset are
not comparable to previous methods. Nevertheless, those transducers inferred
using the Delorenzi dataset obtained better results than Lupas’ and Berger’s
methods. It could be argued that some homology between the Delorenzi’s coiled
coil and non-coiled datasets somewhat biases the results, but this can be refused
by noting that the datasets were built considering low homology between the
sequences and that there are many more sequences in the non-coiled dataset
than in the coiled one.
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5 Conclusions and Future Work

This work addresses the task of protein motif prediction by applying GI tech-
niques. Previous methods are based on the physical-chemical characterization of
the motif. This allow to use a Position Weighted Matrices approach to predict
new motifs. The results obtained lead us to conjecture that it is not necessary
to biologically characterize a new motif in order to develop prediction tools. It is
also to note that these results are feasible to be extended to other bioinformatic
tasks.

In all cases, the results obtained with the Dayhoff coding were much better
than those obtained with the two symbols codification. Therefore, in what follows
we will refer only to Dayhoff codification.

The results obtained using the first corpus (coiled sequences from SwissProt)
show that our method outperforms previous approaches. Nevertheless this re-
sults are somewhat misleading because the transducers inferred lead to a high
number of false positives (both error rate and number of sequences with erro-
neous predictions) when non-coiled sequences are tested.

When the Delorenzi’s dataset was considered, our approach gave better results
to those obtained by previous methods. This is mainly due to an increase of
the specificity levels. This fact is specially motivating in order to apply new
prediction methods, because it is very important to reduce the number of false
positives. The experiments involving non-coiled sequences confirmed the good
performance of our approach, which obtains lower error rate with the same
number of erroneous sequences.

Future lines of work should consider, the consideration of other inference
algorithms. Specially interesting are the learning of synchronized and non-
synchronized ELL [33]. Bigger datasets (modeling coiled coil motif or other bio-
logically interesting motifs) should also be considered. The comparison between
GI and NN or HMM approaches to protein motif location is left also as future
work.

References

1. Editorial. The fundamental role of pattern recognition for gene-expresion/micro-
array data in bioinformatics. Pattern Recognition, 38:2226–2228, 2005.

2. A.W-C. Liew, H. Yan, and M. Yang. Pattern recognition techniques for the emerg-
ing field of bioinformatics: A review. Pattern Recognition, 38:2055–2073, 2005.

3. D.B. Searls. The language of genes. Nature, 420:211–217, 2002.
4. Y. Sakakibara. Grammatical inference in bioinformatics. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(7):1051–1062, 2005.
5. T. Yokomori and S. Kobayashi. Learning local languages and their application

to dna sequence analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(10):1067–1079, 1998.

6. S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara, and T. Shinohara. A learning
algorithm for elementary formal systems and its experiments on identification of
transmembrane domains. In Proceedings of the 25th Hawaii Intl. Conf. on System
Sciences. IEEE, 1992. ISBN: 0-8186-2420-0.



186 P. Peris et al.

7. D. Lopez, A. Cano, M. Vazquez de Parga, B. Calles, J.M. Sempere, T. Perez,
J. Ruiz, and P. Garcia. Detection of functional motifs in biosequences: A grammat-
ical inference approach. In Proceedings of the 5th Annual Spanish Bioinformatics
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8. D. López, A. Cano, M. Vázquez de Parga, B. Calles, J. M. Sempere, T. Pérez,
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25. M. Campos and D. López. Neural network approach to locate motifs in biose-

quences. 3773:214–221, 2005. 10th Iberoamerican Congress on Pattern Recogni-
tion, CIARP 2005.



Protein Motif Prediction by Grammatical Inference 187

26. T. Knuutila. Advances in Structural and Syntactic Pattern Recognition: Proc. of
the International Workshop, chapter Inference of k-Testable Tree Languages, pages
109–120. World Scientific, 1992.
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