
Learning Linear Grammars from Structural
Information *

Jose M. Sempere and Antonio Fos

Departamento de Sistemas InformAticos y Computacidn
Universidad Polit~cnica de Valencia, Valencia, SPAIN.

email:jsempere@dsic.upv.es

Abst rac t . Linear language class is a subclass of context-free language
class. In this paper, we propose an algorithm to learn linear languages
from structural information of their strings. We compaxe our algorithm
with other adapted algorithm from Radhakrishnan and Nagaraja [RN1].
The proposed method and the adapted algorithm are heuristic techniques
for the learning tasks, and they axe useful when only positive structural
data is available.

1 I n t r o d u c t i o n

In this paper we present a method to infer linear grammars from positive struc-
tural examples (9rammar skeletons). The method that we propose is inspired in
a previous work by Radhakrishnan and Nagaraja [RN1]. In their work, Radhakr-
ishnan and Nagaraja proposed an algorithm to infer even linear grammars lAP1]
from grammar skeletons under the grammatical inference paradigm [Anl]. Learn-
ing of even linear grammars has been carried out by other methods from positive
and negative strings as in [SG1, Tal], while learning of context-free grammars
has been carried out from skeletons and tree automaton [Gal, RG1, Sal]. Learn-
ing of linear grammars has not been carried out from string because of the linear
grammar ambiguity problem. Anyway, we can apply the methods proposed in
[Gal, Sal] to learn directly linear languages as context-free grammars. What we
propose in this paper is to learn linear languages as linear grammars. So, we
can obtain linear time parsers to carry out the test phase in opposite to those
obtained in [Gal, Sal].

2 B a s i c d e f i n i t i o n s a n d n o t a t i o n

In the first place, we are going to provide several definitions which help us to
understand the inference methods. The definitions of formal language theory have
been obtained from [HU1, Sa2].

D e f i n i t i o n 1. Given a grammar G=(EA,ET,P,S), we will say that it is a linear
grammar if every production in P follows one of the forms

* Work partially supported by the Spanish CICYT under grant TIC-1026/92-CO2

127

- A --+ v B w , where A, B E EA and v, w E E~

- A ~ x, where A E EA and x E E~

It is clear that, for every linear grammar, we can obtain an equivalent gram-
mar with its productions in the following forms

- A --~ aB , where A, B E EA and a E ET
-- A -+ Ba , where A, B E EA and a E ET

- A -+ a, where A E EA and a E E T U {A}

From now on, we will deal with linear grammars in the latter form.

Def in i t i on 2. Given a grammar G and a string w E L(G), we define a skeleton

for the string w in the grammar G as a derivation tree for the string, where the
internal nodes of the tree appear without labels.

In Figure 1 you can see a skeleton for the string aaabb of the following gram-
mar

- S - - + a A

- A ~ S b l a A I b

Y
a

. /
a

b

x = a a a b b

b

Fig. 1. An example of a skeleton for the string x=aaabb.

Def in i t i on 3. Given a string w, we denote by Ter(w) the set of symbols that
appear in the string w.

128

In what follows, we are going to define several concepts that can distinguish
every internal node in the skeleton from the others. So, we suppose that the
internal nodes of the skeleton are ordered, and every node is denoted by Nij.
For every internal node, we can associate the pair < x, y > or the singleton
< x > depending on the number of sons that the node has. If it has two sons
then we associate to it the pair, otherwise the singleton. It is obvious that every
internal node has two sons or only one. In Figure 2 we can see the different
situations that can be held. If the node has a single son, then it is a terminal
symbol and we associate to the internal node the singleton < a >, where a is the
terminM symbol label, otherwise the node has two sons, that is, a terminal symbol
and other internal node, and we associate to the node the pair < N~j+I, a > or
< a, Nij+l > depending on the location of the terminal symbol label a.

//IN"
a N i j + l

I N i j + l i a a

< a , N i j + 1 > < a > < N i j + 1 , a >

Fig. 2. Different situations for the succesors of an internal node.

De f in i t i on 4. Given an internal node Nij of an skeleton for the string x, we
define the left substring of the node, and we denote it by Isubst(N~y), as the
string formed as follows

1. Initially lsubst(Nij) =)~ (the empty string).
2. I fNi j has the associated pair < a, Nij+l >, then lsubst(Nij)=a(Isubst(Nij+l)).
3. If Nij has the associated singleton < a > or the pair < N, ij+I, a > then finish.

De f in i t i on 5. Given an internal node Nij of an skeleton for the string x, we
define the right substring of the node, and we denote it by rsubst(Nij), as the
string formed as follows

1. Initially rsubst(Nij) = A (the empty string).
2. If Nij has the associated pair < Nij+l, a >, then rsubst(Nij)= (rsubst(Nij+l))a.

129

3. If Nij has the associated singleton < a > or the pair < a, -~ij+l > then finish.

We denote by I x I the length of the string x.

D e f i n i t i o n 6. For every internal node Nij of an skeleton for the string x, we
define the set of left successors of the node, and we denote it by lsucc(N@ as
follows

- Initially Isuee(Nij) = @ (the empty set).
- If Nij has the associated pair < a, gij+l > then lsuee(Nij)={Nij+l} U

Isucc(Nij+ l).
- If Nii has the associated singleton < a > or the pair < Nij+l, a > then finish.

D e f i n i t i o n 7. For every internal node Nij of an skeleton for the string z, we
define the set of right successors of the node, and we denote it by rsucc(Nij) as
follows

- Initially rsuec(N@ = | (the empty set).
- If Niy has the associated pair < Nij+l,a > then rsuee(Nij)={Nij+l} U

r.suce(Nij+i).
- If Nij has the associated singleton < a > or the pair < a, Nij+l > then finish.

From the definitions above, we can give a more global definition by summa-
rizing the left and the right substring into the context of the string.

D e f i n i t i o n 8. Given an internal node Nij of an skeleton for the string z such
that Yl < k < j Nij f[lsuec(Nik) Ursuec(Nik), we define the context of the node
and we denote it by context(Niy) as follows

- If the node has the associated pair < Nijd_l, a) , then the context is defined
by the tuple eontext(Nij) = < Right, rsubst(Nij), Ter(rsubst(Nij)) >.

- If the node has the associated pair < a, N/j+l >, then the context is defined
by the tuple contezt(N~j) = < Left, Isubst(Nij), Ter(lsubst(N~j)) >.

- If the node has associated the singleton < a >, then the context is defined
by the tuple context(Nij) = < Final, a, {a} >.

Finally, we can define the projection functions 7ri of a tuple (xl, x 2 , . . . , x,,)
as ~ j ((x l , z 2 , . . . , x~)) = xj .

3 A n a d a p t a t i o n o f a p r e v i o u s a l g o r i t h m

Our first approach to learn linear grammars has been done by adapting Rad-
hakrishnan and Nagara ja ' s algorithm [RN1J. The adaptat ion has been quite easy,
given that, from the linear skeletons we can obtain even linear ones, by creating
new right or left sons of an internal node. We have labeled these new nodes with
the special symbol , . In figure 3, we can see an example of the transformation
applied to the original skeleton.

130

N i l N i l

a
N I 2 II N 1 2 *

N 1 3 c * N 1 3 c

h N 1 4
I~, N 1 4 *

|) N I 5 b N I 5 *

/p- . .
N 1 6 I)

t * N I 6 b

,> I
h

Fig. 3. Skeleton transformation for the adapted algorithm.

From this transformation, the application of the algorithm is made directly.
After applying the algorithm, we can obtain an even linear grammar with an spe-
cial terminal symbol *, which can be deleted in order to obtain a linear grammar.
Let us see an example of how to apply the learning algorithm.

Taking the following target linear grammar
S ~ aB B --r Cc C ~ bD
D -~ bE f bC E ~ Fb F -+ b l c
The input sample is the set {(a((b(b((b)b)))e)), (a((b(b(b(b((e)b)))))e))}, which

after be adapted to become even linear strings is {a*bb,bb**c*, a*bbbb*cb****e*}
Then we can calculate all the sets defined in the algorithm [RN1]

N n = < A, A, (a, b, c) > NSI = { N l l , N2~} $1 = {abbbc, abbbbcbe}
N~2 = < a, A, (b, c) > NS2 = {N~2, N22} $2 = {bbbe, bbbbcbc}
N13 = < a, c, (b) > NSa = (Sqa) $3 = (bbb)
] V 1 4 = < g b , c , (b) ~> N S 4 = { N 1 4 } S4 = (bb)
N15 = < ab, be, (b) > NS5 = {Ms} $5 = {b}
N2~ = < A,A,(a,b,c) > NS6 = {N2a} Sa = {bbbbcb}
N22 = < a, A, (b, c) > NS7 = {N24} $7 = {bbbcb}
N23 = < a, c, (b, c) > NSs = {N2~) Ss = {bbcb}
N24 = < ab, c,(b,e) > NS9 = {N26) 59 = (beb)
Nea = < abb, e, (b, c) > NSlo = {N27} $10 = {cb}
N26=<abbb , c , (b , c) > N S n ={N2s} S u = { c }
N27 = < abbbb, c, (b, e) >
N2s = < abbbb, bc, (b, e) >

After this process, the inferred even linear grammar obtained by the algorithm
is the following one

131

1 --4 a 2 ,

2-4.3cl .6c
3 - 4 b 4 ,

and , by de l e t i ng the
1 - 4 a 2 4

2 -4 3c] 6c 5

3 - 4 b4 6

4 - 4 . 5 b 7 -4 b8* 10 -4 l l b .

5 -4 b 8 -4 b9 . 11 -4 c

6 -4 b7* 9 -4 b l 0 *
spec ia l t e r m i n a l s y m b o l *, we o b t a i n t he l i nea r g r a m m a r
--+ 5b 7 -4 b8 10 -4 l l b

- 4 b 8 - 4 b 9 1 1 - 4 c

-4 b7 9 --+ b l0

4 An algorithm to learn linear grammars

In what follows, we are going to propose another algorithm to obtain linear

grammars from positive structural examples. The algorithm is inspired in that

proposed by Radhakrishnan and Nagaraja in [RN1], in the sense that we use

a similar notation and concepts like in their work. The basic idea is to observe

similar context nodes, to label them with the same nonterminal symbol and to

construct the grammar from the labeled skeletons or derivation trees.

- Input A non empty positive sample of skeletons S +.
- Output A linear grammar that generalize the sample.
- Method

* STEP I To enumerate the internal nodes of every skeleton according to the
following notation. For the j-th skeleton, to start to enumerate every skeleton
by levels from the root to the last level Nj~, Nj2,...

. STEP 2 To calculate the context of every node Nij according to definition 8.

. STEP 3 To define a relation between nodes - as follows Nij - Npq iff

7cl (context (N~j)) = 7cl (context (Npq)) and ~r3 (context (Nij)) = 7:a (context (Npq))
Wi th the defined relation, to form the classes of nodes NSk by enumerat ing
the classes for k = 1, 2 , The nodes without context do not belong to any
class.

(Creation o] nonterminal symbols of the grammar)
VNSk d o

. S T E P 4 If VN~j E NSk 7h(context(Nij)) = Final then h~j = Ak,o.

. S T E P 5 If NSk only contains a single node Nij, with I l r2(context(Ni j))]= m
then N~j+p = Ak,pVO ~_ p < m - 1.

- S T E P 6 If NSk contains more than one node then

* S T E P 6.1 To select N~j such that I 7~2(context(Nij)) I= m is minimal.
Then Nij+p = Ak,pV0 < p ~ m - 1.

* S T E P 6.2 To eliminate the node Nij of S T E P 6.1 from the set NS~. If
NSk is a singleton then go to S T E P 6.3, else go to S T E P 6.1.

* S T E P 6.3 Take the only node Nij of the set NSk with] ~2(context(l\~j)) I=
n and take the value m of S T E P 6.1. If n < m then Nij+p = Ak,pVO <
p < n - 1, else Nij+p =- Ak,(pl]m) V0 < p < n - 1 (where pl]m denotes p
module m).

* S T E P 7 To rename the labels of all the skeleton roots as S, which will be the
axiom of the grammar .

- S T E P 8 To build a linear g rammar as result of the derivation trees const ructed
by put t ing labels to the nodes. If the skeleton for the emp ty str ing belongs to
S + then to add the product ion S --~ A to the set P .

132

An example.
Taking the following target linear grammar
S -+ aB B --+ Ce C -~ bD
D --+ b E [bC E -+ Fb F--+ b l c
Tile input sample is the set {(a((b(b((b)b)))c)), (a((b(b(b(b((e)b)))))c))} of fig-

ure 4.

N i l N21

tl N I2 a N22

NI3 c N23 c

b S [~ i .q ~ 2 - q

NI6[h ~ 2 6

b b N27

N28 b

c

Fig. 4. Input sample for the proposed algorithm.

We can calculate the contexts of every node in the following way

Nil = < Lef t , a, {a} > N22 = < Right, e, {c} > NS1
N12 = < Right, e, {c} > N23 = < Lef t , bbbb, {b}) > NS2
N13 = < Lef t , bb, {b} > N2~ = < Right, b, {b} > NS3
N15 = < Right, b, {b} > N2s = < Final, e, {c} > NS4
N16 = < Final, b, {b} > NS5
N2~ = < Lef t , a, {a} > NS6

= {Nl l , N21 }
= {N12, N ~ }
= {N~3, N~3}
= {N15, N27}
= {N16}
= {N28}

After this process, the inferred linear grammar obtained by the algorithm is
the following one

S -+ aA2,0 A3,1 -+ bA4,0 t bA3,0 A6,0 ~ c
A2,0 -+ A3,0e A4,0 -~ As,0b I A6,ob
A3,0 -~ bA3,1 As,0 -+ b

5 Acknowledgements

We would like to thank Professor G. Nagaraja's interest and all the mail that we
have interchanged about this work. We would like to thank Dr. Pedro Garcia's

133

original contribution to the transformation of linear skeletons to even linear skele-
tons.

References

[API]

[An1]

[Gall

[HUll

[RN1]

[RG1]

[Sal]

[Sa2]
[SGI]

[Tall

Amar, V., Putzolu, G.: On a Family of Linear Grammars. Information and
Control 7" (1964) 283-291.
Angluin, D., Smith, C.: Inductive Inference : Theory and Methods. Computing
Surveys 15 No. 3 (1983) 237-269.
Garcfa, P.: Learning K-Testable Tree Sets from positive data. Technical Report
DSIC-II/46/93. Universidad Polit~cnica de Valencia. (1993)
Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and
Computation. Addison-W-esley Publishing Company. (1979)
Radhakrishnan, V., Nagaraja, G.: Inference of Even Linear Grammars and its
Application to Picture Description Languages. Pattern Recognition 21 No. 1
(1988) 55-62.
Ruiz, J., Garda, P.: The Algorithms RT and k-TTI : A First Comparison.
Lecture Notes in Artificial Intelligence. Proceedings of the Second International
Colloquium on Grammatical Inference ICGI94. Ed. Springer-Verlag. (1994)
180-188.
Sakakibara, Y.: Efficient Learning of Context-Free Grammars from Positive
Structural Examples. Information and Computation 97 (1992) 23-60.
Salomaa, A.: Formal Languages. Academic Press. (1973)
Sempere, J., P. Garcfa, P.: A Characterization of Even Linear Languages and
its Application to the Learning Problem. Lecture Notes in Artificial Intelligence.
Proceedings of the Second International Colloquium on Grammatical Inference
ICGI94. Ed. Springer-Verlag. (1994) 38-44.
Takada, Y.: Grammatical Inference of Even Linear Languages based on Control
Sets. Information Processing Letters 28 No.4 (1988) 193-199.

