
Learning Locally Testable Even Linear

Languages from Positive Data�

José M. Sempere and Pedro Garćıa

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Valencia, Spain
{jsempere,pgarcia}@dsic.upv.es

Abstract. Learning from positive data is a center goal in grammatical
inference. Some language classes have been characterized in order to
allow its learning from text. There are two different approaches to this
topic: (i) reducing the new classes to well known ones, and (ii) designing
new learning algorithms for the new classes. In this work we will use
reduction techniques to define new classes of even linear languages which
can be inferred from positive data only. We will center our attention
to inferable classes based on local testability features. So, the learning
processes for such classes of even linear languages can be performed by
using algorithms for locally testable regular languages.
Keywords: Learning from positive data, local testability, even linear
languages.

1 Introduction

Grammatical inference [AS83, Sa97] is the inductive learning approach where
target concepts are represented through objects from Formal Language theory
(typically finite automata, formal grammars and Turing machines-like accep-
tors or generators). Learning new language classes from different information
protocols is one of the most important goals in grammatical inference. Along
the time, there have been characterized many language classes that can be in-
ferred from only positive data. Learning from positive data [An80] is one of
the most attractive information protocols for grammatical inference. It excludes
negative information and all the problems concerning its characterization in
terms of noisy or incomplete data. Nevertheless, the main problem with learn-
ing from positive data is the overgeneralization effect to formulate hypothe-
ses. Anyway, some subclasses of regular languages have been characterized and
proved to be inferred from positive data. First, talking about regular languages,
we can mention, among others, reversible languages [An82, Mä00], k-testable
languages in the strict sense [GVO90], different subfamilies of testable lan-
guages including k-testable languages [Ru97], terminal distinguishable languages
[Fe99, RN87a, RN87b] and generalizations of k-testable plus terminal distin-
guishable languages [Fe00a]. Talking about even linear languages, we can refer
� Work supported by the Spanish CICYT under contract TIC2000-1153.

P. Adriaans, H. Fernau, and M. van Zaanen (Eds.): ICGI 2002, LNAI 2484, pp. 225–236, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

226 José M. Sempere and Pedro Garćıa

to terminal distinguishable even linear languages [RN88, Fe99] and deterministic
even linear languages which are an extension of regular reversible ones [KMT97].
A generalization to function distinguishable language learning can be found in
[Fe00b]. Finally, for other language classes, there have been different approaches
to the same direction [EST96, EST98, EST00].

In this work, we will explore how k-testability can be extended to act over
even linear languages and, therefore, can be taken into account to design new
learning algorithms based on old ones. Our success criterion will be Gold’s iden-
tification in the limit [Go67] and the information protocol will be only positive
strings of the target language. We will propose some front-end transformations
in order to carry out the learning methods.

The structure of this work is as follows: First, we will give the definitions
and results that we will use in order to define new language classes. We will
introduce different classes of even linear languages whose definitions depend on
how the reductions to regular languages are performed. For every language class
we will propose an integrated protocol to efficiently learn target languages of
every class.

2 Basic Concepts and Notation

The basic concepts of formal language theory that we will use can be consulted
in [HU79]. First, Σ will denote an alphabet and card(Σ) its cardinality. Σ∗ will
be the set of words over Σ. The empty string will be denoted by λ. The reversal
of a string x will be denoted by xr. The product of the strings x and y will be
denoted by xy. The set of strings with length less than or equal to k (resp. less
than k, equal to k) will be denoted by Σ≤k (resp. Σ<k, Σk). Given any string
x ∈ Σ∗, its length will be denoted by |x|. A language L defined over Σ is any
subset of Σ∗.

A grammar is a construct G = (N,Σ, P, S) where, N and Σ are two disjoint
alphabets of nonterminal and terminal symbols, P is a finite set of production
rules and S ∈ N is the axiom of the grammar. The relationship between strings of
symbols that can eventually appear during a derivation process in the grammar
will be denoted by ∗⇒

G
. So, the language obtained by the grammar G is the set

L(G) = {x ∈ Σ∗ : S ∗⇒
G

x}. The class of regular languages will be denoted by

REG and the class of context-free languages will be denoted by CF .
Even linear language class (ELL) was first introduced by Amar and Putzolu

in [AP64]. An even linear grammar G = (N,Σ, P, S) is characterized through
the forms in which every production appears in the grammar. There are two
possible forms for every production in G:

1. A→ xBy with A,B ∈ N and x, y ∈ Σk for any k > 0
2. A→ x with A ∈ N and x ∈ Σ∗

Learning Locally Testable Even Linear Languages from Positive Data 227

The following normal form of the productions can be applied to any even
linear grammar to obtain an equivalent one:

1. A→ aBb with A,B ∈ N and a, b ∈ Σ
2. A→ x with A ∈ N and x ∈ Σ ∪ {λ}

From now on we will work with grammars in the previously defined normal
form. It is well known that REG ⊂ ELL ⊂ CF . Amar and Putzolu [AP64]
proved that any even linear language can be characterized by a finite index
quasi-congruence over pair of strings (x, y). Later, Takada [Ta88] showed how
any even linear language can be obtained from a regular control set together
with a predefined universal grammar. He designed an inference protocol for even
linear languages based on a reduction of the input sample to a different one which
induces a regular language. Sempere and Garćıa [SG94] defined a transformation
σ : Σ∗ → (ΣΣ)∗Σ ∪ λ in the following way

1. (∀a ∈ Σ ∪ {λ}) σ(a) = a
2. (∀a, b ∈ Σ) (∀x ∈ Σ∗) σ(axb) = [ab]σ(x)

The transformation σ−1 was defined in a similar way:

1. (∀a ∈ Σ ∪ {λ}) σ−1(a) = a
2. (∀a, b ∈ Σ) (∀x ∈ Σ∗) σ−1([ab]x) = aσ−1(x)b

Sempere and Garćıa [SG94] showed that L is an even linear language iff σ(L)
is regular. So, in a similar manner as Takada did, they reduced the problem of
learning even linear languages to the problem of learning regular ones.

3 Locally Testable Even Linear Languages

Locally testable languages were first introduced by McNaughton and Papert
[McP71]. We will give some definitions to establish the characteristics of such
languages.

Definition 1. Let k > 0 and for every string x ∈ Σ∗ we define the k-testable
vector of x as the tuple vk(x) = (ik(x), tk(x), fk(x)) where

ik(x) =

{
x if |x| < k

u : x = uv, |u| = k − 1 if |x| ≥ k

fk(x) =

{
x if |x| < k

v : x = uv, |v| = k − 1 if |x| ≥ k

tk(x) = {v : x = uvw, u ∈ Σ∗, w ∈ Σ∗, |v| = k}

228 José M. Sempere and Pedro Garćıa

Definition 2. For every k > 0, we define the equivalence relation ≡k⊆ Σ∗×Σ∗

as follows:

(∀x, y ∈ Σ∗) x ≡k y ⇐⇒ vk(x) = vk(y)

It has been proved that ≡k is a finite index relation and ≡k+1 refines ≡k.

Definition 3. We will say that L ⊆ Σ∗ is k-testable iff it is the union of some
equivalence classes of ≡k. L is locally testable if it is k-testable for any k > 0.

We will denote the family of k-testable languages by k-T L and the class of
locally testable languages by LT . It is proved that LT ⊂ REG

Another language class which is intimately related to LT is the class of locally
testable languages in the strict sense [Ga88]. We will define it as follows:

Definition 4. Let Σ be an alphabet and Zk = (Σ, Ik, Fk, Tk) where Ik, Fk ⊆
Σ≤k−1 and Tk ⊆ Σk. Then, L is a k-testable language in the strict sense if it is
defined by the following expression

L = (IkΣ
∗) ∩ (Σ∗Fk)− (Σ∗TkΣ

∗)

We will say that L is locally testable in the strict sense if it is k-testable in the
strict sense for any k > 0.

We will denote the family of k-testable languages in the strict sense by k-
LT SS and the class of locally languages in the Strict Sense by LT SS. It is
proved that LT SS ⊂ REG. Furthermore, k-LT is the boolean closure of k-
LT SS. Observe that both classes, k-LT and k-LT SS are closed under reversal.

In order to work with even linear languages we must use σ transformation
together with a morphism g : (ΣΣ) ∪ Σ → ∆, where ∆ is an alphabet such
that card(∆) ≥ card(Σ)2 + 2 · card(Σ). So, if Σ = {a1, a2, · · · , an} and ∆ =
{b1, b2, · · · , bm} then g will be defined as follows

1. (∀ai ∈ Σ) g(ai) = bi

2. (∀ai, aj ∈ Σ) g([aiaj]) = bn+i·n+j

Definition 5. Let L ∈ ELL. Then, L is a locally testable even linear language
iff g(σ(L)) ∈ LT . We will say that L is a locally testable even linear language
in the strict sense iff g(σ(L)) ∈ LT SS.

We will denote the class of locally testable even linear languages as LTELL and
the class of locally testable even linear languages in the strict sense as LT SSELL
. From the last definition, we can design a reduction technique to learn languages
from LTELL or LT SSELL by applying learning algorithms for LT or LT SS. Let
us suppose that the learning algorithm for LT is ALT as described in [Ru97],
then the script for such a reduction is showed in Figure 1.

Learning Locally Testable Even Linear Languages from Positive Data 229

Input: A finite sample R
Method:

S = ∅
∀x ∈ R

S = S ∪ g(σ(x))
H = ALT (S)

Output: σ−1(g−1(H))

Figure 1. A method to infer languages from LTELL

The script to learn languages from LT SSELL is similar to the previous one. In
this case, we should use a method to infer languages from LT SS as in [GVO90].
Let us suppose that such a method is ALT SS , then the inferring method is
showed in Figure 2

Input: A finite sample R
Method:

S = ∅
∀x ∈ R

S = S ∪ g(σ(x))
H = ALT SS(S)

Output: σ−1(g−1(H))

Figure 2. A method to infer languages from LT SSELL

Example 1. Let us suppose that sample R is defined by the set

R = {10, 10001110, 111000111000, 11100001111000}

then σ(R) equals to the set

{[10], [10][01][01][01], [10][10][10][01][01][01], [10][10][10][01][01][01][01]}

If we apply the morphism g such that g([10]) = a and g([01]) = b then
g(σ(R)) = {a, abbb, aaabbb, aaabbbb}. Now, by applying ALT SS(S) to g(σ(R)),
with k = 2, we obtain an hypothesis H such that σ−1(g−1(H)) is the following
even linear grammar: S → 1A0; A→ 1A0 | 0B1 | λ; B → 1A0 | 0B1 | λ.

A Characterization of Locally Testable Even Linear Grammars

Now, once we have efficiently solved the problem of learning locally testable even
linear languages, we can take profit of the reductions we have applied in order
to describe some features that makes an even linear grammar a locally testable
one. Let us formalize such characteristics.

Property 1. Let k > 0 and let G = (N,Σ, P, S) be an even linear grammar such
that the following condition holds: (∀A ∈ N) if S ∗⇒

G
x1Ay1 and S

∗⇒
G

x2Ay2 then

∀w ∈ Σ∗ g(σ(x1wy1)) ≡k g(σ(x2wy2)). Then L(G) ∈ k − LTELL

230 José M. Sempere and Pedro Garćıa

Proof.
Let us suppose that the grammar G holds the condition that the property

states. Then, obviously, the strings of the language L(G) can be obtained by
O(card(N)) equivalence classes according to ≡k.

�

A similar result can be obtained in order to characterize those even linear
grammars that generate languages from LT SSELL.

4 More on Locally Testable Even Linear Languages

We have showed some relationships between even linear and regular languages
through the transformations σ and g. Now, we will change the front-end string
interface in order to characterize new language classes inside ELL that benefits
from local testability in a different manner as described before.

Half-splitting Strings

Take notice that, in every even linear language, all the strings can be separated
by right and left sides with equal length and a (possibly λ) centered string. The
sides of every string can be mapped to derivations in even linear grammars

So, we will define a new transformation HalfSplit over strings which will
separate them in two halves with the same length. For every string x ∈ Σ∗,
we will define HalfSplit(x) = {x1, a, x

r
2} with x = x1ax2 and |x1| = |x2| and

a ∈ Σ ∪ {λ}.
Now, we will extend the operation over any finite sample S.

HalfSplit(S) = {L(S),M(S), R(S)}

where
L(S) = {x1 ∈ Σ∗ : ∃x ∈ S, HalfSplit(x) = {x1, a, x2}},
R(S) = {(x2)r ∈ Σ∗ : ∃x ∈ S, HalfSplit(x) = {x1, a, x2}} and
M(S) = {a ∈ Σ ∪ {λ} : ∃x ∈ S, HalfSplit(x) = {x1, a, x2}}.

Synchronized Vs. Non Synchronized Half-splitting

With the help of HalfSplit, we can obtain hypotheses called constructors which
will guide the learning process to obtain the final hypothesis. In Figure 3 we show
the scripting method to obtain constructors from HalfSplit operation by using
learning algorithms for LT language class.

Learning Locally Testable Even Linear Languages from Positive Data 231

Input: A finite sample S
Method:

TL = L(S) ∈ HalfSplit(S)
TR = R(S) ∈ HalfSplit(S)
TM = M(S) ∈ HalfSplit(S)
HL = ALT (TL)
HR = ALT (TR)
HM = TM

Output: {HL,HM ,HR}

Figure 3. A method to infer constructors for synchronized and
non synchronized half-splitting

Example 2. Let S = {abbaabab, abbabaababab, abbabbabbaababababab}, then
HalfSplit(S) = {L(S), R, (S),M(S)}, where

L(S) = {abba, abbaba, abbabbabba},
R(S) = {baba, bababa, bababababa} and
M(S) = {λ}.
Now, by applying learning algorithm ALT , with k = 2 we obtain constructors

HL and HR with HM = {λ} where the equivalence classes constructed by the
learning algorithm are the following
HL = {[λ]≡2 , [a]≡2 , [ab]≡2 , [abb]≡2 , [abba]≡2, [abbab]≡2}
HR = {[λ]≡2 , [b]≡2 , [ba]≡2 , [bab]≡2 , [baba]≡2}

After obtaining constructors from a finite sample then we can define different
even linear language subclasses. Our motivation is to combine different equiv-
alence classes from the relation ≡k that has been obtained during the learning
process. It is obvious that the sets that we have obtained from HalfSplit form
an input sample for a hidden locally testable regular language.

We will define synchronicity among the equivalence classes that we have
obtained apart from L(S) andR(S). Synchronicity means that, if we take a string
from the input sample x = x1ax2 ∈ S, then the equivalence class obtained for x1

must be linked to the equivalence class obtained for (x2)r . So, we can define the
relation ∼k between strings as follows:(∀x, y ∈ Σ∗) with |x1| = |x2|, |y1| = |y2|,
x = x1ax2, y = y1ay2 and a ∈ Σ ∪ {λ}

x ∼k y ⇐⇒ vk(x1) = vk(y1) ∧ vk(x2) = vk(y2)

Definition 6. We will say that L ⊆ Σ∗ is k-testable synchronized half-split iff it
is the union of some equivalence classes of ∼k. L is locally testable synchronized
half-split if it is k-testable synchronized half-split for any k > 0.

We will denote the language class of locally testable synchronized half-split
even linear languages by LT SHSELL. Then, we can infer k locally testable syn-
chronized half-split even linear languages from constructors by applying the script
showed in Figure 4.

232 José M. Sempere and Pedro Garćıa

Input: A finite sample S and constructors HL,HM and HR

Method:
Enumerate HL and HR

/* card(HL) = n and card(HR) = m */
N = {Aij : 0 ≤ i ≤ n, 0 ≤ j ≤ m}
S = A00

∀x ∈ S
∀u, v, w ∈ Σ∗ a, b ∈ Σ : x = uawbv with |u| = |v|
/* [u]≡k

is the ith equivalence class in HL */
/* [vr]≡k

is the jth equivalence class in HR */
/* [ua]≡k

is the kth equivalence class in HL */
/* [vrb]≡k

is the lth equivalence class in HR */
Aij → aAklb ∈ P
if w ∈ HM then Akl → w ∈ P

Output: G = (N,Σ, P, S)

Figure 4. A method to infer languages from LT SHSELL.

The identification in the limit of the class LT SHSELL can be easily deduced
from the convergence of hypotheses HL and HR by using the algorithm ALT .
Observe that the method proposed in Figure 4 is conservative, that is, all the
classes of relation ≡k are combined iff they have any representant in the input
sample.

Example 3. Let us take the input sample and constructors of Example 2. Then
the hypothesis H obtained by the method of Figure 4 is the following grammar

A00 → aA11b A44 → bA53b | λ
A11 → bA22a A53 → aA44a | bA54a
A22 → bA33b A54 → bA53b | aA43b
A33 → aA44a A43 → bA54a

The following result characterizes the grammars that generate the languages
of LT SHSELL.

Property 2. Let k > 0 and let G = (N,Σ, P, S) be an even linear grammar such
that the following condition holds: (∀A ∈ N) if S ∗⇒

G
x1Ay1 then S

∗⇒
G

x2Ay2 iff

x1 ≡k x2 and y1 ≡k y2. Then, L(G) ∈ k − LT SHSELL

Proof.
Let us suppose that the grammar G holds the condition that the property

states. Then, obviously, if we take two different strings of L(G) which can be
obtained during a derivation process in the grammar as follows

S
∗⇒
G

x1Ay1 ⇒
G

x1ay1

S
∗⇒
G

x2Ay2 ⇒
G

x2ay2

Learning Locally Testable Even Linear Languages from Positive Data 233

it can be easily proved that, according to the last derivations, x1 ≡k x2 and y1 ≡k

y2. The strings of the language L(G) can be obtained by at most O(card(N))
equivalence classes according to ∼k. So, L(G) ∈ k − LT SHSELL �

The definition of non synchronized half-split even linear languages is quite
simple. Here, we do not force every equivalence class to be linked with its corre-
spondent (right or left) equivalence class. We will define the relation ≈k between
strings as follows: (∀x, y ∈ Σ∗) with |x1| = |x2|, |y1| = |y2|, x = x1ax2, y = y1ay2

and a ∈ Σ ∪ {λ}

x ≈k y ⇐⇒ vk(x1) = vk(y1) ∨ vk(x2) = vk(y2)

Definition 7. We will say that L ⊆ Σ∗ is k-testable non synchronized half-
split iff it is the union of some equivalence classes of ≈k. L is locally testable
non synchronized half-split if it is k-testable non synchronized half-split for any
k > 0.

The class of locally testable non synchronized half-split even linear languages
will be denoted by LT NSHSELL. Then we can infer k locally testable non
synchronized half-split even linear languages from constructors by applying the
script showed in Figure 5.

Input: A finite sample S and constructors HL,HM and HR

Method:
Enumerate HL and HR

/* card(HL) = n and card(HR) = m */
N = {AiL : 0 ≤ i ≤ n} ∪ {AjR : 0 ≤ j ≤ m} ∪ {S}
∀x ∈ S
∀u ∈ Σ∗ a ∈ Σ : x = uawv with |ua| ≤ |v|
/* [u]≡k

is the ith equivalence class in HL */
/* [ua]≡k

is the kth equivalence class in HL */
∀b ∈ Σ

AiL → aAkLb ∈ P
if w ∈ HM then AkL → w ∈ P

∀x ∈ S
∀v ∈ Σ∗ b ∈ Σ : x = uwbv with |bv| ≤ |u|
/* [vr]≡k

is the ith equivalence class in HR */
/* [vrb]≡k

is the kth equivalence class in HR */
∀a ∈ Σ

AiR → aAkRb ∈ P
if w ∈ HM then AkR → w ∈ P

if A0L → w then S → w ∈ P
if A0R → w then S → w ∈ P

Output: G = (N,Σ, P, S)

Figure 5. A method to infer languages from LT NSHSELL.

234 José M. Sempere and Pedro Garćıa

Again, the identification in the limit of the class LT NSHSELL can be easily
deduced from the convergence of hypotheses HL and HR by using the algorithm
ALT .

Example 4. Let us take the input sample and constructors of Example 2. Then
the hypothesis H obtained by the method of Figure 5 is the following grammar

S → aA1La | aA1Lb | aA1Rb | bA1Rb
A0L → aA1La | aA1Lb A0R → aA1Rb | bA1Rb
A1L → bA2La | bA2Lb A1R → aA2Ra | bA2Ra
A2L → bA3La | bA3Lb A2R → aA3Rb | bA3Rb
A3L → aA4La | aA4Lb A3R → aA4Ra | bA4Ra
A4L → λ | bA5La | bA5Lb A4R → λ | aA3Rb | bA3Rb
A5L → aA4La | aA4Lb | bA5La | bA5Lb

The following result characterizes the grammars that generate languages of
the class LT NSHSELL.

Property 3. Let k > 0 and let G = (N,Σ, P, S) be an even linear grammar such
that the following condition holds: (∀A ∈ N) if S ∗⇒

G
x1Ay1 then S

∗⇒
G

x2Ay2 iff

x1 ≡k x2 or y1 ≡k y2. Then, L(G) ∈ k − LT NSHSELL

Proof. Let us suppose that the grammar G holds the condition that the property
states. Then, obviously, if we take two different strings of L(G) which can be
obtained during a derivation process in the grammar as follows

S
∗⇒
G

x1Ay1 ⇒
G

x1ay1

S
∗⇒
G

x2Ay2 ⇒
G

x2ay2

then, it can be easily proved that, according to the last derivations, x1 ≡k x2

or y1 ≡k y2. The strings of the language L(G) can be obtained by O(card(N))
equivalence classes according to ≈k. So, L(G) ∈ k − LT NSHSELL �

From properties 2 and 3, we can obtain the following result

Corollary 1. LT NSHSELL ⊆ LT SHSELL

5 Conclusions and Future Works

We have introduced different transformations over input strings of even linear
languages in order to characterize several language subclasses that can be in-
ferred from positive sample. The learning algorithms that we have used are those
concerning locally testable languages. Obviously, by selecting different learning
algorithms for regular languages we can define different subclasses of even lin-
ear languages. Under this approach, there have been such reductions as those
showed in [Fe99, KMT97, RN88]. We will explore the relationship between the
classes of languages defined in such works and our approach by using σ and g.

Learning Locally Testable Even Linear Languages from Positive Data 235

On the other hand, the reductions that we have used goes in the same di-
rection as the definition of function distinguishable languages [Fe00b]. We will
explore the relationship between function distinguishability and the reductions
that we have proposed.

Finally, we have selected only two learning algorithm concerning local testa-
bility. The selection of different learning algorithms for local testability as those
showed in [Ru97] (i.e right and left locally testable, piecewise locally testable,
etc.) will define new inferrable language classes inside even linear language class.
We will explore such direction in order to obtain a complete catalog of inferrable
locally testable even linear languages.

Acknowledgements

José M. Sempere is grateful to Erkki Mäkinen for nice comments and corrections
made to this work.

References

[AP64] V. Amar and G. Putzolu. On a Family of Linear Grammars. Information and
Control 7, pp 283-291. 1964.

[An80] D. Angluin. Inductive Inference of Formal Languages from Positive Data. In-
formation and Control 45, pp 117-135. 1980.

[An82] D. Angluin. Inference of Reversible Languages. Journal of the Association for
Computing Machinery. Vol 29 No 3, pp 741-765. July 1982.

[AS83] D. Angluin and C. Smith. Inductive Inference : Theory and Methods. Comput-
ing Surveys, vol. 15. No. 3, pp 237-269. 1983.

[EST96] J.D. Emerald, K.G. Subramanian and D.G. Thomas. Learning code regular
and code linear languages. Proceedings of the Third International Colloquium on
Grammatical Inference ICGI-96. (L. Miclet, C. de la Higuera, eds). LNAI Vol.
1147, pp 211-221. Springer. 1996.

[EST98] J.D. Emerald, K.G. Subramanian and D.G. Thomas. Learning a subclass of
context-free Languages. Proceedings of the 4th International Colloquium ICGI-98.
(V. Honavar, G. Slutzki, eds). LNAI Vol. 1433, pp 223-243. 1998.

[EST00] J.D. Emerald, K.G. Subramanian and D.G. Thomas. Inferring Subclasses of
contextual languages. Proceedings of the 5th International Colloquium ICGI 2000.
(A. Oliveira, ed). LNAI Vol. 1891, pp 65-74. 2000.

[Fe99] H. Fernau. Learning of terminal distinguishable languages. Technical Report
WSI–99–23. Universität Tübingen (Germany), Wilhelm-Schickard-Institut für In-
formatik, 1999.

[Fe00a] H. Fernau. k-gram extensions of terminal distinguishable languages. Proceed-
ings of the International Conference on Pattern Recognition ICPR 2000, Vol. 2
pp 125-128. IEEE Press. 2000.

[Fe00b] H. Fernau. Identification of function distinguishable languages. Proceedings of
the 11th International Conference on Algorithmic Learning Theory ALT 2000. (H.
Arimura, S. Jain, A. Sharma, eds.). LNCS Vol. 1968 pp 116-130. Springer-Verlag
2000.

236 José M. Sempere and Pedro Garćıa

[Ga88] P. Garćıa. Explorabilidad Local en Inferencia Inductiva de Lenguajes Regulares
y Aplicaciones. Ph.D. Thesis. Departamento de Sistemas Informáticos y Com-
putación. Universidad Politécnica de Valencia. 1988.

[GVO90] P. Garćıa, E. Vidal and J. Oncina. Learning Locally Testable Languages in
the Strict Sense. Proceedings of the First International Workshop on Algorithmic
Learning Theory. pp 325-338. 1990.

[Go67] M. Gold. Language Identification in the Limit. Information and Control 10, pp
447-474. 1967.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Co. 1979.

[KMT97] T. Koshiba, E. Mäkinen, Y. Takada. Learning deterministic even linear lan-
guages from positive examples. Theoretical Computer Science 185, pp 63-97. 1997.

[Mä00] E. Mäkinen. On inferring zero-reversible languages. Acta Cybernetica 14, pp
479-484. 2000.

[McP71] R. McNaughton and S. Papert. Counter-free automata. MIT Press. 1971.
[RN87a] V. Radhakrishnan. Grammatical Inference from Positive Data: An Efective

Integrated Approach. PhD. Thesis. Department of Computer Science and Engi-
neering. IIT, Bombay. 1987.

[RN87b] V. Radhakrishnan and G. Nagaraja. Inference of Regular Grammars via
Skeletons. IEEE Trans. on Systems, Man and Cybernetics, 17, No. 6 pp 982-992.
1987.

[RN88] V. Radhakrishnan and G. Nagaraja. Inference of Even Linear Languages and
Its Application to Picture Description Languages. Pattern Recognition, 21, No. 1.
pp 55-62. 1988.

[Ru97] J. Ruiz. Familias de Lenguajes Explorables : Inferencia Inductiva y Caracteri-
zación Algebraica. Ph.D. Thesis. Departamento de Sistemas Informáticos y Com-
putación. Universidad Politécnica de Valencia. 1997.

[Sa97] Y. Sakakibara. Recent advances of grammatical inference. Theoretical Computer
Science 185, pp 15-45. 1997.

[SG94] J.M. Sempere and P. Garćıa. A Characterization of Even Linear Languages
ans its Application to the Learning Problem. Proceedings of ICGI’94 (R. Carrasco
and J. Oncina, eds.). LNAI Vol. 862, pp 38-44. Springer-Verlag. 1994.

[Ta88] Y. Takada. Grammatical Inference of Even Linear Languages based on Control
Sets. Information Processing Letters 28, No. 4, pp 193-199. 1988.

	Introduction
	Basic Concepts and Notation
	Locally Testable Even Linear Languages
	More on Locally Testable Even Linear Languages
	Conclusions and Future Works

