
A New Regular Language Learning Algorithm
From Lexicographically Ordered Complete

Samples�

Jose M. Sempere Pedro Garc��a

Departamento de Sistemas Inform�aticos y Computaci�on
Universidad Polit�ecnica de Valencia

Camino de Vera s/n, 46071 Valencia (Spain)
email:jsempere@dsic.upv.es email:pgarcia@dsic.upv.es

Abstract

A new regular language learning algorithm is presented to obtain descrip-
tions which consist of Deterministic Finite Automata (DFAs). The process
is an identi�cation in the limit process. The main characteristic is that the
DFAs are conjectured using a constructive strategy which does not use a large
data space. The total time used is polynomial in the size of the minimum-
state DFA and the data seen so far. In the course of learning, the algorithm
uses deterministic hypotheses which are bounded in space with the minimal
state DFA consistent with the sample and the single sample string used as
input. The algorithm works on lexicographically ordered examples and this
order is shown to be transcendental for learning.

1 Introduction.

An algorithm has recently been proposed for identifying in the Limit the Regu-
lar Language Family from lexicographically ordered complete samples using Non-
Deterministic Finite Automata as current hypotheses which in the Limit converged
to a DFA which is isomorphic to the unknown regular language canonical acceptor
[3]. We propose an alternative algorithm which works within the same paradigm
and framework, that is, an ordered and completed samples presentation. The pro-
posed algorithm has Porat's algorithm same computational cost order but it works
using DFAs as current hypotheses. The proposed algorithm uses a constructive tech-
nique for state grouping which is inspired from another regular language learning
algorithm developed in [2].

The present article is divided into the following sections: In part 2, we present
the basic concepts and notation used in the task we want to carry out. In part 3,
we formally present the proposed algorithm and we explain how it works as well

�Work partially supported by the Spanish CICYT under grant TIC-1026/92-CO2

1

as prove the algorithm convergence. In part 4, we calculate the space and time
complexity of the algorithm.

2 Basic concepts and notation.

The notation used is discussed in [1].

De�nition 1. A Deterministic Finite Automaton (DFA) is de�ned as the
tuple (Q,�,�,q0,F),where Q is a �nite set of states, � is an alphabet of input symbols,
� : Qx� ! Q is the transition function between states, q0 2 Q is the initial state
and F � Q is the acceptance state set.

Given a DFA A, we de�ne the following set as the language accepted by A and
we denote it by L(A):

L(A)= f w 2 �� j �(q0,w) 2 F g

De�nition 2. Given L � ��, we denote by x�1L the right quotient of L by x,
that is, x�1L=f w 2 �� j xw 2 L g.

So, �L denotes the right congruence de�ned in the following way: 8 x,y2��,
x �L y i� x�1L=y�1L. If L is a regular language, then �L has a �nite index and
is the least �ne right congruence which covers L. So, the L canonical acceptor, its
minimal state DFA, is de�ned as A(L)=(Q,�,�,q0,F), where Q=fu�1 L j u 2 ��g,
q0=��1 L, F=fu�1L j u 2 L g and � (u�1L,a)=(ua)�1L.

De�nition 3. Given a language L 2 ��, a completed presentation for L is
the in�nite sequence f(x1,I(x1)),...,(xn,I(xn)),...g, where every word in �� appears
classi�ed according to its inclusion in L, that is, I(xi) can take the following values

I(xi) =
�
+ if xi 2 L
� otherwise

In the task we are working on, we will use a lexicographically ordered completed
presentation for the language to be inferred. We de�ne a sample for the language to
be inferred as every initial �nite sequence of its presentation as de�ned previously.
We denote by Mx the ordered sample for the language where x is the last string
which appears in the sequence.

De�nition 4. GivenMx as a sample for the language L, we de�ne the sample
language L as the set of every string which appears in Mx and is included in L and
we denote it by Lx+. We denote by Lx

�

the set of every string which appears in Mx

and is not included in L.

De�nition 5. Given the sample Mx, two strings w and y are distinguishable
under Mx if (w�1Lx+ \ y�1Lx

�

) [(w�1Lx
�

\ y�1Lx+) 6= � is true. Two strings u
and v have a relationship under Mx and we will denote it by u�Mx

v i� they are not
distinguishable under the sample Mx.

De�nition 6. Let the DFA A=(Q,�,�,q0,F). We de�ne the �rst lexicograph-
ically ordered string w2 �� that carries out the following predicate �(q0; w) = q is
the shortest pre�x of a state q 2 Q and we denote it by Sp(q). Two states, q and
p, will keep the following order: q < p i� Sp(q) < Sp(p) under the lexicographical
order.

2

3 Algorithm and properties.

The algorithm we propose obtains completed DFAs which have two kinds of tran-
sitions which we call �xed and variable. The �xed transitions have a transcendental
value, given that they distinguish every automaton state from its shortest pre�x.

The algorithm constructs new hypotheses using re�nements over the current
hypotheses. The re�nement of the hypotheses is made through a sequence of well-
de�ned actions from a new single sample string (w,I(w)) which is inconsistent with
the current hypotheses. These actions are:

� To delete the �rst variable transition which makes the current hypotheses
inconsistent with the input data.

� To add new states, which we call expanded states, in order to construct the
needed transitions in order to accept the input string (w,I(w)).

� To try to relate the new expanded states with old unexpanded states using
the relationship which we de�ne later.

In Figure 1, we show the proposed algorithm for identifying the regular lan-
guage class in the Limit as an alternative to the algorithm proposed in [3]. We will
explain every operation that we use in the algorithm and we will prove that the
algorithm actually converges to a minimal state deterministic hypothesis. We will
explain every operation separately and we will explain its theoretical foundation as
follows:

deltransition(Ax,w).

Given the input string w, this operation deletes the �rst variable transition
which is used in the automaton Ax for incorrectly accepting or rejecting the input
sample string w. So, the string w can be factored , given a state p, an input symbol
em a and a string y as w=Sp(p)ay, under the assumption that �(p; a) is the �rst
variable transition used for analyzing the string w. As output for this operation we
obtain a new incomplete DFA which has no transitions a�ecting the input string w
or a�ecting any string which used the deleted transition, that is, any string which
has Sp(p)a as pre�x.

expstate(Aw ,w,I(w),Ax).

This operation constructs a set of new expanded states and transitions to
accept or reject the input string w. Given a state p, remember that w=Sp(p)ay.
This operation also constructs the transitions needed to accept or reject the pre�xed
strings of w which are lexicographically greater than Sp(p). Every new expanded
state parity is calculated as follows: If the state is the last one used to analyze w,
then this is an acceptance state i� I(w)=+. If the state is not the last one used to
analyze w, then, given a string z, we can relate the state to a shortest pre�x Sp(p)z
and its parity will be the Sp(p)z parity obtained through the automaton Ax. The
new expanded states will have Sp(p)z as shortest pre�x on the assumption that z is
the sequence of transitions needed for acceding from state p to the new state.

3

Initially the free monoid or the empty set is constructed depending on whether
I(�) value is positive or negative.
Input : Ax (w,I(w)) w=succ(x).
Output : Aw Mw=f(�,I(�)),: : :,(x,I(x)),(w,I(w))g-sample consistent
Method :

if Ax is not consistent with (w,I(w)) then
Aw := deltransition(Ax,w);
Aw := expstate(Aw,w,I(w),Ax);
Aw := joinstate(Aw,w,I(w),Ax);

else
Aw := Ax;

endif
endmethod.

Figure 1: The proposed algorithm for Regular Language Identi�cation in the Limit.

joinstate(Aw,w,I(w),Ax).

This operation attempts to relate the new expanded states with other old
ones. In every intermediate hypothesis, the state set can be partitioned into two
expanded and unexpanded state subsets, and every subset can be ordered by apply-
ing the lexicographic order to the shortest pre�x of the states. Let's consider the
sets Qe=fq1e,q2e; : : : ; qmeg and Qf=fq1f , q2f ,...,qnfg as the previous ordered sub-
sets. The operation attempts to join the expanded states, while maintaining the
established order. So, in the �rst place, it will try to join q1e with q1f . If this
is not successfully done, then it will try to join q1e with q2f and so on until it is
successfully done or there are no more unexpanded states as candidates for joining.
Subsequently, the operation attempts to join q2e in the same manner and so on until
the set Qe is empty. In the case that the state did not join with another unexpanded
one, then the algorithm deletes the state from Qe and adds it to Qf and proceeds
to reorder this last set.

The rule used for joining states is the following: A state qie is joined with
another qjf , if the consistence with the complete sample Mw=f(�,I(�)),: : :,(x,I(x)),
(w,I(w))g is preserved and this happens i� Sp(qie)�Mw

Sp(qjf). In such a case, the
transition which acceded to the state qie will accede to qjf and then it belongs to
the variable transition set. On the other hand, the state qie is deleted and every
one of its expanded succesors is also deleted. In the case that the new state qie
cannot be joined with any of Qf , the transition which acceded to qie is converted to
a �xed one and the algorithm proceeds to construct every variable transition with
all the alphabet symbols from the nonjoined state to any state qjf , including qie,
in keeping with the next rule : 8a2 �, a transition from qie to qjf is constructed
under the symbol a only if the hypothesis preserves the consistence with the sample
Mw= f(�,I(�)),...,(x,I(x)) ,(w,I(w))g and this will happen i� Sp(qie)a�Mw

Sp(qjf).

In Figure 2, we show an example of the elaboration of current hypotheses up
to the convergence to a minimal state DFA. In Figure 2, every hypothesis has: the
input string which makes the previous hypotheses inconsistent with the input data;
the expanded DFA showing the states and transitions expanded with discontinuos
arrows; and the DFA obtained as the output of the algorithm. The �xed transitions
have been drawn with bold arrows and the variable transitions have been drawn

4

with normal arrows.

λ

a,b

(a,+)

λ

b

a
a

λ

b

a
a

a,b

(aa,+)

λ

b

a
a

b

aa

λ

b

a
a

b

a

a

(ab,+)

λ

b

a
a

a

ab

b

λ

b

a
a

a,b

λ a
a

a,b

b

(bb,+)

a

bb
b

λ a
a

a,b

b

a
b

(ba,-)

λ a
a

a,b

b ba

b

a

λ a
a

a,b

b

a,b

(λ,-)

(aaa,-)

λ a
a

b

b

a

b

a

aa aaa
a

λ a
a

b

b

a
b

aa

a,bb

b

b

b

b a

Figure 2: Learning a language and elaborating the intermediate hypotheses.

We will prove that the proposed algorithm identi�es the regular language class
in the Limit. This is, that given an unknown regular language L, the algorithm
obtains a deterministic, completed and minimal state hypotheses A(L) in the Limit.
This result will be proved through three theorems that we will enunciate and prove
as follows.

Theorem 1 Given the lexicographically ordered completed sample Mx=f(�,I(�)): : :
(x,I(x))g and the DFA Ax obtained by the proposed algorithm as current hypotheses
output for the input sample Mx. Then given Ax and (w,I(w)), w=succ(x), as input
to the proposed algorithm, the algorithm outputs a DFA which is consistent with the
sample Mw=f(�,I(�)),: : :,(x,I(x)),(w,I(w))g.

Proof

Let's study two di�erent situations with the present input.

� Ax is consistent with (w,I(w)) In such a case, Aw = Ax and Aw is consistent
with the sample Mw

5

� Ax is inconsistent with (w,I(w))

Three di�erent actions will be taken :

{ Aw:=deltransition(Ax,w) which deletes the �rst variable transition that
makes Ax inconsistent.

{ Aw:=expstate(Aw,w,I(w),Ax) which constructs a new path in the transi-
tion diagram for the string (w,I(w).

{ Aw:=joinstate(Aw,w,I(w),Ax) which is consistent with Mw given that for
joining two states or making new transitions the hypothesis keeps on
preserving the relationship �Mw

and this is the condition for making the
hypothesis consistent with the sample Mw.

Theorem 2 Let the completed lexicographically ordered sample Mx=f(�,I(�)): : :
(x,I(x))g for the language L. The proposed algorithm obtains as current hypothe-
sis output a DFA Ax that has no more states than A(L) (the language canonical
acceptor).

Proof

We will prove this theorem by induction on the size of the sampleMw=f(�,I(�)): : :
(x,I(x)),(w,I(w))g

Our induction base has the single string M�=f(�,I(�))g as input sample.
Therefore, by de�nition, the algorithm constructs a DFA that has a unique state
and consequently it has no more states than the DFA A(L).

Let's suppose as induction hypothesis that given the sample Mx=f(�,I(�)): : :
(x,I(x))g, the algorithm constructs a DFA Ax that has no more states than the DFA
A(L).

Given a new single sample string input (w,I(w)), w=succ(x), then we can study
two di�erent cases:

� Ax is consistent with (w,I(w)).

In such a case Aw=Ax and Aw has no more states than the DFA A(L).

� Ax is not consistent with (w,I(w)).

The following actions will be taken:

{ Aw:=deltransition(Ax,w) that does not add a new state to the DFA Ax.

{ Aw:=expstate(Aw,w,I(w),Ax). This operation can add a number of states
that makes Aw have more states than A(L).

{ Aw:=joinstate(Aw,w,I(w),Ax). As a result of this operation there is not a
number of states greater than in A(L) given that under the relation that
de�nes the DFA Aw, �Mw

, the algorithm cannot join two di�erent states,
therefore according to the relation that de�nes the DFA A(L), �L, these
two states cannot be joined because the relation �L is a re�nenment over
�Mw

.

Theorem 3 The proposed algorithm identi�es every regular language L in the Limit
from its lexicographically ordered completed presentation.

6

Proof

Let's suppose that the proposed algorithm does not converge with a lexico-
graphic presentation. Let L be the source language, let A(L) be the canonical
acceptor and let n be the number of states of A(L). The number of di�erent DFAs
with a number of states equal or smaller than n is �nite. If the proposed algorithm
obtains a hypothesis that is di�erent to A(L) as output, then this hypothesis will be
inconsistent with any input data. Every hypothesis that is obtained as output has
a number of states smaller or equal to n and Theorem 1 implies that if a hypothesis
has been rejected, then it cannot be obtained as output again. So if the number of
possible hypotheses obtained as output is �nite, then it implies that after a �nite
time the DFA A(L) will be obtained as output and then the proposed algorithm will
converge to A(L).

4 Complexity.

Let's consider an input to the algorithm made up by Ax and (w,I(w)) with the
sizes j Qx j= n, j w j= m and j � j= p. The size of the input data seen so far,
Mx=f(�,I(�)): : : (x,I(x))g, is bounded as follows

m�1X
i=1

pi <jMx j�
mX
i=1

pi

and it bounds the number of algorithm runs that have been made until the
present input.

4.1 Time complexity.

We are going to analyze the time required for every action in the proposed algorithm.

� Checking the Ax consistence with (w,I(w))

Given that Ax is a DFA, the consistence checking is equal to testing the only
path in Ax for the input string w. This path has a size of m. So the algorithm
needs as many computation steps as input string symbols and in accordance
with this, this operation is O(m) time complexity.

� deltransition(Ax,w)

This operation will delete the �rst variable transition for the input string w in
the DFA Ax as in the previous operation and it is O(m) time complexity.

� expstate(Aw,w,I(w),Ax)

In the best case, this operation makes a single state and in the worst case it
will make as many states as the w size, that is m. Every elaboration of a state
implies establishing its parity, and this is made by checking the DFA Ax with
every w pre�x which produces the new states. So the total time required is

7

m+
mX
i=1

i = m+
m � (m+ 1)

2

But, given that the algorithm can establish the pre�x parity by checking the
completed string w and storing the pre�x parity only one time, the total time
required is O(m) time complexity.

� joinstate(Aw,w,I(w),Ax)

This operation attempts to join every new expanded state with an older one.
The maximumnumber of expanded states is bounded by m and the maximum
number of unexpanded states is bounded by n. In every joining attempt, the
operation checks the consistence with the completed sample, so the total time
is bounded by

n �m �
mX
i=1

pi

but there are a number of states that will never join with other ones and they
will be transformed into unexpanded ones. In such cases, the operation makes
variable transitions to unexpanded states and it will have a time complexity
cost bounded by

p � n �m �
mX
i=1

pi

Considering that for a language L the number of states of A(L) is k, then the
de�nitive total time required is

k �m �
mX
i=1

pi � (p+ 1)

and this cost will be considered polynomial time in an amortized sense as is
expressed in [3].

4.2 Space complexity.

Supposing that, for the language L, A(L) has a number of states equal to k, then
the total space used in the Limit will be k(p + 1). The only operation that needs
additional space is expstate(Aw,w,I(w),Ax) and it needs to make a number of states
bounded by m, so in such a case, the total space required is m+ k(p+ 1).

8

References

[1] J. Hopcroft, J. Ullman Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Publishing Company, 1979.

[2] J. Oncina, P. Garc��a Inferring regular languages in polinomial update time. Pattern Recog-
nition and Image Analysis. Selected Papers from the IVth Spanish Symposium. Series in Ma-
chine Perception Arti�cial Intelligence. Vol. 1. World Scienti�c. 1992.

[3] S. Porat, J. Feldman Learning Automata from Ordered Examples. Machine Learning, 7.
pp 109-138. Ed. Kluwer Academic Publishers, 1991.

9

