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A b s t r a c t  

Even Linear Language class is a subclass of context-free class. In this work we 
propose a characterization of this class using a relation of finite index. Theorems 
are provided in order to prove the consistence of the characterization. Finally, we 
propose a method to learn this class using a reduction to the problem of learning 
regular languages. 

1 Introduction. 

Formal Language Theory has been applied to learning under the Grammatical Inference 
paradigm. A survey of this approximation can be found in [2]. Under this paradigm, 
one way of obtaining good learning algorithms is by providing some characteristics of the 
formal language class to be learned and by taking advantage of these characteristics to 
design the algorithms. Typically, the language classes used in grammatical inference have 
been the context-free class, the regular class or any context-free subclass which could or 
could not contain the regular class. Some learning algorithms have been proposed to learn 
some of these classes from information that consisted of given data as strings or skeletons, 
or different queries. 

The Even Linear Language class (ELL) was initially introduced by Amar and Putzolu 
[1] as a subclass of the more generic Linear Language class. In their work, Amar and Put- 
zolu provided a Nerode-type characterization [4] of the ELL. Under this characterization, 
a language is even linear iff it is saturated by a finite index quasi-congruence. Informally, 
a quasi-congruence is similar to a congruence in the sense that given two words, its equiv- 
alence implies the equivalence of the words obtained by including the previous words in 
right and left equal length contexts. 

Some works have focused on the learning problem of even linear languages. For ex- 
ample, the work done by Radhakrishnan and Nagaraja [6] deals with a finite and positive 
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sample for carrying out the learning task. In their work, they used sample strings to ob- 
tain even linear grammars from the structural information that the string skeletons could 
give in terms of which subskeletons were similar and which were not. This algorithm has 
been applied to the Picture Description Language (PDL) to recognize simple symmetrical 
objects as established in the same work. Another study in learning even linear languages 
is by Takada [7]. In his work, Takada established that every even linear language can be 
generated by a universal grammar provided with a certain control set that regulates the 
application of its rules. Takada proved that the control set of every even linear gram- 
mar is a regular language. This allows us to reduce the problem of learning even linear 
languages to the problem of learning regular languages. With this purpose, the input 
data are analyzed through the universal grammar and converted into strings of rules from 
which the control set is learned using any regular language inference algorithm. Finally, 
an even linear grammar can be obtained from the inferred control set which generates the 
same language as the universal grammar with the control set. 

In the present work, we propose a new characterization of the ELL which allows us 
to define a canonical grammar associated to an even linear language. This grammar is 
the minimal size grammar of a set of even linear grammars in a standard form which 
generates the language and is unique except for those which are isomorphic to it. 

The Even Linear Languages learning problem is posed, as in [7], through a reduction to 
the Regular Languages learning problem. The input data are submitted to a transforma- 
tion, and a regular language learning algorithm is applied to the transformed data. The 
inverse transformation provides a hypothesis which consists of an even linear grammar 
for the input sample, from the inferred automata. 

2 Basic  concepts  and notat ion.  

Let E be a finite alphabet and E* the free monoid generated by E. For every x E E, 
I x I denotes the length of x and A denotes the string of length zero. Given a language 
L _C_ E* and x E E*, then x - l L  and Lx -1, respectively, denote the right quotient and the 
left quotient of z in L, i.e. z - l L = { u  r E* ] zu  r L}, L z - l = { u  ~ E* ] ux r L }. 

A finite automaton (FA) over E is denoted by a five-tuple M=(Q,E,5,qo,F), where Q 
is the set of states, q0 E Q the initial state~ F _C Q the final states, E the input alphabet, 
and 5 the transition function. The language accepted by Mis  denoted by L(M). 

The four tuple G=(N,E,P,S) denotes a grammar where N and ~ are the nonterminal 
and the terminal alphabets respectively, P is the set of rules of G and S C N is the start 
symbol. L(G) denotes the language generated by G. 

An Even Linear Grammar (ELG) is a context-free grammar [4] G-(N,E,P,S)  where 
all the rules in P are of the following forms 

* A --+ xBy, where x,y E E*, A,B ~ Nand I x ]=l Y I" 

* A ~ x ,  w h e r e x E E * , A c  N. 

A language L is an even linear language if there exists an ELG which generates L. 
The class of Even Linear Languages is a proper subclass of the context-free languages and 
properly includes the class of regular languages. 
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Given an ELG, there exists an equivalent ELG where every production is in one of 
the following standard forms [1] 

�9 A ~ aBb, where a,b E G, A,B E N. 

�9 A ~  a, w h e r e a C E U { A } , A c  hr. 

3 A charac ter i za t ion  of  the  E v e n  Linear Languages .  

We are going to propose an alternative characterization that could serve as a base in the 
learning problem. In the first place, we will establish that given any even linear grammar 
in the standard form defined above, we can find an equivalent deterministic even linear 
grammar using a transformation on the strings of the language through the following 
definition. 

D e f i n i t i o n  1. Let 2 be an alphabet and let the string x=ala2...ak-lakak+l...a=-la~, 
where V 1 < i < n, i # k~ ai E E and ak C 2 U {~}. We define the joined extreme of x 
and we denote it by or(x) as the string a~a~ ] a2a~-i ] ... ] ak-lak+l Iak. We can define 
the joined extreme of a string in an inductive way through the following two definitions: 

�9 ~(a)=~, v a ~ s u {2,}. 

�9 a(axb)-=abla(x), V a,b C 2, V x E 2 ' .  

We can extend this definition to languages and provide the joined extreme8 of a lan- 
guage L defined as e(L) = { ~r(x) ] x C L}. 

In the same way we can define the inverse transformation as follows 

�9 a - ' ( a ) = a ,  V a ~ 2 U {A}. 

�9 ~-l(ablx)=a~(~)b,  V a,~ ~ m, V �9 e 2". 

In this case, ~-~(L) = {o-~(~) I x ~ L} and ~- ' (~(~) )=x ,  so ~-~(~(L))=L.  
From the last definition, we can enunciate a theorem which establishes that the trans- 

formation e defined above obtains a regular language from an even linear language, and 
from this fact, we can define a relation of finite index that  characterizes the even linear 
languages. 

T h e o r e m  1 If L C ~* is an even linear language, then ~r (L) is a regular language. 

Proof 
Let the language L=L(G), where G=(N,E,P,S) is an even linear grammar in the 

standard form. We define the finite automaton A=(Q,2',6,qQ,F), where Q=N U{qs} , 
q / ~  N, P /=G 2 U 2,  q0=S, F={qI},  6 is defined by the rules: 

* If A~aBb  e P, then B E 6(A,ab) 

* If A---~a E P, then 8(A,a)={q/}. 
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So, through an induction process we can prove that 

VAeN A=>5 x i#a(A,~(x)>rr e. 

Let us observe that. if we take a finite automaton like the one constructed in the previ- 
ous theorem as input ,  then we can build an equivalent even linear grammar mainta ining 
the inverse process of the theorem, and the equivalence proof is trivial. In this case, given 
an automaton A, the obtained grammar generates the language o~-I(L(A)). In Figure 1, 
we can observe an example of an even linear grammar and its associated finite automaton. 

Once we have shown a correspondence between an even linear language L and its 
regular transformed language c~(L), we can establish certain relationships between the 
regular language theory and similar results for even linear languages to obtain a relation 
of finite index which produces an equivalent result to the Myhill-Nerode Theorem [4]. In 
order to do this, we will give another definition. 

D e f i n i t i o n  2. Given an even linear grammar in the standard form G=(N,E,P,S), we 
will say that  this grammar is deterministic if A ~ a B b  G P and A ~ a C b  G P imply that  
C=B. 

T h e o r e m  2 Given an even linear grammar in the standard form G=(N,E,P,S), then a 
deterministic even linear grammar in the standard form G' exists such that L(G)=L(G').  

Proof 
Given G we can obtain a FA A which accepts c~(L(G)) as established in Theorem 1. 

Using operations on this automaton [4], we can obtain an equivalent deterministic FA 
A'. Keeping similar rules to those used in the previous theorem, the grammar that  we 
associate to A' accepts ~<(~( -L(a) )=L(O) .  

Finally, we can establish an equivalence relation taking (ExE)* as the relationship 
domain. 

G:S ---) aSbiaBalbCbla[b 

B - 9  aBala 

C ---) bCb[b aa 

A." 

a>..... s 

Figure 1: An Even Linear Grammar G and its associated FA A. L(A)=a(L(G)). 

D e f i n i t i o n  3. Given a language L, we will say that the string pairs (u~,v~) and (u2,v2) 
are related (they are undistinguishable) under the language L and we denote it by (Ul,Vl) 
- L  (u~,v2) iff 

�9 i~1 I =Iv1 I, l u~l=lv21 

�9 V w C E* ulwvl E L iff u~wv2 ~ L or, using an alternative notation, we will say 
that  (ul, vl)L=(u2, v2)L, where (v ,v)L=u-l(Lv -~) = (u-~L)v -~. 
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From the above definition, we can establish the definitive result to characterize the 
Even Linear Language class. We will do this by the following theorem. 

T h e o r e m  3 L C_ E* is an even linear language iff '~-L has a finite index. 

Proof 

* Necessary condition proof. 

Let the language L=L(G), where G=(N,2,P,S) is a deterministic even linear gram~ 
mar as established in Theorem 2. We define the relation ---c over (ExE)* as follows. 

- I~1 I=1 ~11, 1~2 I=1 ~2 I 

- S ====>*~ ulAvl iff S ~ u2Av2 

Obviously, ~ a  has a finite index, given that it will have as many equivalence classes 
as nonterminal  symbols of the grammar. We will prove that if (ul,vl) - ~  (u2,v2), 
then (u~,v~) =--L (u2,v2)~ and therefore ----L has a finite index. 

(Ul,Vl)  ~-Z'~ G (U2,V2) ~ V w ~ ~,,* UlWV 1 e n iffu2wv2 E L W (ul,vl)--L (ue,v2). 

. Sufficient condition proof. 

Then,  let us suppose that ~L has a finite index. Let us define the grammar 
G=(N,E,P,S), where N={(u,v)L I u,v E E* and I u l=l v j}, S=(A,A)L and P is 
defined through the following rules 

- If (u,v)L=A and (ua, bv)L=B, then A---+aBb E P. 

- ~f a e A n{~ u { ~ ) } ,  t h e n  A - ~ a  e P.  

Then let us see that L(G)=L. In the first place, we could prove that  (u,v)L=A iff 
S~*QuAv, through an induction process. 

Once this has been proved, we can see that L(G)=L, through a double inclusion 
proof. 

- L ( a )  c__ L 

Let us take x e L(G). Then S=::ez*~uAv:::~Guav=x with ] u I=[ v I and aE(E U 
{,~}), then (u,v)L=A and a E A, so uav=x �9 L. 

- L _ L(G) 

Let x=uav �9 n with I u ]=l v I and a �9 (E U {~}), then a �9 (u,v)n=d. So, it 
is clear that A--~a �9 P and S~*auAv,  so S===>~uAv~uav=x C L(G). 

Let us see an example of how to construct an even linear grammar from the equivalence 
relation as established in the previous theorem. 

Example 
L=aa*b*b 
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(a,a)L=Q (a,a)A=a*=B (a,a)B=a'=B (a,a)C=Q 
(a,b)L=a*b*=A (a,b)A=a*b*=A (a,b)B=Q (a,b)C=Q 
(b,a)L=Q (b,a)A=Q (b,a)B=Q (b,a)C=Q 
(b,b)L=| (b,b)A=b*=C (b~b)B=Q (b,b)C=b*=C 

so, the obtained grammar (maintaining the construction of Theorem 3) will be the 
~llowing one: 

S ~ aAb A ~ aBa laAb lbCbla lb lA  
B ~ a B a ] a ] A  C ~ b C b [ b [ A  

Finally we can enunciate a result related to the minimum size of the even linear 
grammars. 

T h e o r e m  4 The constructed grammar of Theorem 3 is the minimal deterministic gram- 
mar which generates L and is the only one except for isomorphic ones. 

Proof 
As seen in Theorem 3, given a grammar G, the induced relation -=-a is a refinenment 

over the relation ~c,  so the number of auxiliary symbols induced by =a  is greater than 
the number of those induced by --=L. 

4 Application to the learning problem. 

Once we have presented a characterization of the class of the even linear languages, our 
purpose is to apply it to its learning. It can easily be seen that learning an even linear 
language L can be solved by learning its associated regular language (r(L), so the problem 
of learning even linear languages is obviously resolved. The characterization of the Even 
Linear Languages proposed in this work is different from the characterization used in [7] 
but allows us to obtain a result over the learning of the even linear languages which is 
completely equivalent. 

Thus, the scheme to be carried out to learn any even linear language could be the one 
proposed in Figure 2. 

~ Re~l~r ...... 
Transformation Learning [ [']hnsformation [ r 

Input Algodt~ [Ou~ut FA Ou~ut ELG G 

Sample S L(G)=~ I(L(A)) 

Figure 2: A scheme to learn Even Linear Languages. 

The proposed scheme is easy to understand. Given a sample of an even linear language, 
the transformation (r is applied and it obtains a regular language sample. Then, any 
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regular language learning algorithm can be applied over the transformed sample and, 
last, the transformation that obtains even linear grammars from finite automata  is made 
by the inverse result of Theorem 1. Let us note that in the module that  uses any regular 
language learning algorithm, an algorithm like the one proposed in [5] could be used which 
uses a complete presentation sample as input  and obtains finite au tomata  as a hypothesis. 
This algorithm identifies any regular language in the l imit [3], so, in such a case, any even 
linear language can be identified. 

Another way of carrying out the identification of any even linear language in the limit 
could be done by providing algorithms that  work without making a reduction of this 
problem to the regular language identification problem. It could be done by providing a 
nonterminal  merging technique in a similar way of that applied in [5] and [8]. The results 
of Theorem 3 and Theorem 4 will help to prove the convergence of the algorithm. 

5 Acknowledgements 

We would like to thank Manuel V~zquez de Parga for his helpful suggestions and his orig- 
inal contribution to the transformation of Even Linear Languages to Regular Languages. 

References 
[1] V. AMAP~, G. PUTZOLU On a Family of Linear Grammars. Information and Control 7, pp 283-291. 

1964. 

[2] D. ANGLUIN~ C. SMITH Inductive Inference: Theory and Methods. Computing Surveys 15, No. 3 
pp 237-269. 1983. 

[3] M. GOLD Language Identification in the Limit. Information and Control 10, pp 447-474. 1967. 

[4] J. HOPCROFT, J. ULLMAN Introduction to Automata Theory, Languages and Computation. 
Addison-Wesley Publishing Company. 1979. 

[5] J. ONCINA, P. GA~CiA Inferring regular languages in polinomial update time. Pattern Recogni- 
tion and Image Analysis. Selected Papers from the IVth Spanish Symposium. Series in Machine 
Perception Artificial Intelligence. Vol. 1. World Scientific. 1992. 

[6] V. P~ADI-IAKRISHNAN AND G. NAGARAJA Inference of Even Linear Grammars and Its Application 
to Picture Description Languages. Pattern Recognition 21, No. 1 pp 55-62. 1988. 

[7] Y. T.~KADA GrammaticM Inference of Even Linear Languages based on Control Sets. Information 
Processing Letters 28, No. 4 pp 193-199. 1988. 

[8] B. TRAKHTENBt~OT, Y. BARZDII~" Finite Automata: Behavior and Synthesis. North Holland Pub- 
lishing Company. 1973. 


