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A b s t r a c t .  A method to infer a subclass of linear languages from positive 
structural information (i.e. skeletons) is presented. Tile characterization 
of the class and the analysis of the time and space complexity of tile 
algorithm is exposed too. The new class, Terminal and Structural Dis- 
tinguishable Linear Languages (TSDLL), is defined through an algebraic 
characterization and a pumping lemma. We prove that the proposed al- 
gorithm correctly identifies any TSDL language in the limit if structural 
information is presented. Furthermore, we give a definition of a cha- 
racteristic structural set for any target grammar. Finally we present the 
conclusions of the work and some guidelines for future works. 

K e y w o r d s  : Formal languages, grammatical inference, characterizable methods, 
structural information. 

1 I n t r o d u c t i o n  

Linear languages [Ha78] form a language class known to be properly included 
in the class of context-free languages which properly includes regular languages 
and even linear languages [AP64]. Within this class, there are some unsolvable 
problems such as the equivalence problem between linear grammars [Ro72] or the 
characteristic set problem for grammatical inference [Hi97]. Anyway, some for- 
real language classes which include linear languages or intersect with them have 
been proposed to be learned from positive strings or positive and negative strings 
or structural (skeletons) information. Specifically, parenthesis linear grammars 
can be learned by using a reduction to regular languages [Ta88a], even linear 
languages can be learned by a reduction to regular languages [Ta881),SG94] and 
some subclasses of even linear languages can be learned from positive strings 
[KMT97,Ra87,RN88,Ma96]. Takada has proposed a hierarchy in which some 
reductions can be performed by using control sets [Ta95] and within this hierar- 
chy, some linear languages and some context-sensitive languages can be learned. 

* Part of this work was carried out during a visit of J. Sempere to Prof. G. Nagaraja 
at IIT, Mumbai. The visit was granted by the ~rea de Programas Internacionales 
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Miikinen has proposed a method to learn the Szilard language of linear grammars 
[Ma90]. 

On the other hand, structural information (skeletons) has been used as data 
source in learning context-free languages. Sakakibara [Sa90,Sa92] has proposed 
two different nmthods to learn context-free grammars by using queries and po-- 
sitive information. M/ikinen [Ma92b] has pointed out a different way of taking 
advantage of structural information in learning context-free grammars by using 
Szilard languages while Ruiz and Garcia [RG94] have presented some prelimi- 
nary comparative results in using Sakakibara's algorithm or a method to infer 
k-testable tree sets proposed by Garcla [Ga93]. Mhkinen [Ma92a] has proposed 
a grammar class to be learned from structural information (type invertible gram- 
mars), this work is highly related to Sakakibara's algorithm [Sa90]. Radhakrish- 
nan and Nagaraja [Ra87,RN87] have presented a method to infer a subclass of 
regular languages, Terminal Distinguishable Regular Languages (TDRL), from 
the structural information induced by positive data. They have proposed a si- 
milar method [Ra87,RN88] to infer a subclass of even linear languages, Temninal 
Distinguishable Even Linear Languages (TDELL), from positive strings. Sempere 
and Fos [SF96] proposed a heuristic technique, based on the previous methods 
by Radhakrishnan and Nagaraja, to work with positive linear skeletons. 

In this paper, we present a characterizable method which infers linear gram- 
mars from positive structural information (i.e. linear skeletons). The learned 
class, Terminal and Structural Distinguishable Linear Languages (TSDLL), is 
characterizable by terminal distinguishability and, which is a necessary condi- 
tion, by distinguishable subskeletons. 

The paper has the following sections : in section 2, we give some basic def- 
initions from formal language theory which help to formalize the results and 
to understand the proposed inference method. An algebraic definition of TSDL 
languages together with a pumping lemma is presented in section 3 to define 
the formal framework in which the method will work. The inference method is 
proposed and we give some features of the method such as convergence property 
and complexity analysis. We will present a complete example to understand the 
method. Finally, we present some conclusions and suggestions for future work 
related to the results of this paper. 

2 Basic definitions and notation 

We introduce some basic concepts about formal language theory and formal 
grammars. Most of them can be found in any introductory book on the subject 
such as [Ha78]. 

In what follows, 27 denotes an alphabet and 27* the universal language over 
27, that is the set of all possible strings over 27. Given an alphabet 27 and a 
string x E 27", we denote by I x [ the length of x. A denotes the empty string 
with I A [= O. 

G = (N, 27, P, S) is a context-flee grammar, where N is an alphabet of au-  
xiliary symbols, 27 is an alphabet of terminal symbols with 27 N N = 0, P is 
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a set of productions where every production is a pair (A,/3) with A E N and 
/3 E {N U ~7}*, it can be denoted as A -~ /3, and S E N is the axiom of the 
grammar.  

Given a grammar G = (N, •, P, S), and two strings x, y E {NU E}*, we can 
that  x derives to y, denoted by x ~ y, if y can be obtained by applying to say 

x a finite set of productions of P.  The language generated by the grammar G is 
denoted as L(G) and is defined as the set L(G) = {x E 27* [ S ~ x}. 

D e f i n i t i o n  1. Let G = (N, E, P, S) be a grammar. VA E N, the set L(G, A) 
is defined as {x E 27* [ A ~Gx}. Obviously, L (G,S)  = L(G), and we denote 

L(G,A)  as L(A) whenever G is understood. 

D e f i n i t i o n  2. Let G = (N, 27, P, S) be a eontext-fcee grammar. A derivation 
tree in G is a tree which can be defined by the following rules: 

1. Every node of the tree can be labeled with a (terminal or auxiliary) symbol 
of the grammar or With the empty string )~. 

2. The root of the tree is labeled with S. 
3. The internal nodes of the tree are always labeled with auxiliary symbols. 
4. If  an internal node is labeled with A and its sons are labeled with symbols 

X I , X 2 , .  . . X ,  then A --r XIXg . .. X ,  E P. 
5. If  a node is labeled with )~ then it is the only son of its father. 

The result of a derivation tree is the string obtained by looking over all its 
leaves from left to right. It is obvious that  every string of L(G) admits at least 
one derivation tree. 

A grammar G is said to be ambiguous if there exists a:string x E L(G) such 
that  there exist more than one derivation tree with result x. A derivation A-tree 
is a derivation tree with root  label A. 

D e f i n i t i o n  3. Let G = (N, 27, P, S) be a context-free grammar. A skeleton in G 
is a derivation tree in which the internal nodes are not labeled. 

In Figure 1, a grammar together with a derivation tree and the corresponding 
skeleton are given for a string x = abbd. 

D e f i n i t i o n  4. Let G = (N, 27, P, S) be a grammar. We will say that G is linear 
if every production in P takes one of the following forms 

- A ~ u B v ,  whereA, B E N a n d u ,  v E S * .  
- A --+ u, where A E N and u E 27*. 

Every linear grammar G = (N, 27, P, S) admits the following normal form in 
its productions A ~ aB I Ba I a I A where A, B E N and a E ~7 

From now on, we will deal with linear grammars in this normal form. Fur- 
thermore, we can omit the production A --+ )~, given that  it is only necessary in 
such languages where ,~ E L(G). In such case we can easily extend the results 
and formalization that  we are going to carry out. 
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5 ~  A B  

A ~  aAb Ib 

B ~  cBd Id 

S 

A B * * 

a A b d a �9 b d 

& b 

Fig. 1. A context-free grammar together with a derivation tree and the associated 
skeleton for a string x = abbd. 

D e f i n i t i o n  5. Let G be a linear grammar in normal form, x E L(G) and 8k a 
skeleton with result x according to grammar G. Then, for every internal node 
n of sk the frontier of n can be defined as the result of the subskeleton rooted 
at n, the head of n can be defined as the left result of the skeleton up to n and 
the tail of n can be defined as the right result of the skeleton up to n. Given an 
internal node n, the tuple (head(n), frontier(n), tail(n)) denotes its structural 
information. 

In Figure 2, the frontier, head and tail of a skeleton internal node is shown. 
I t  is obvious that ,  given a skeleton sk and one of its internal nodes n, then the 
result of the skeleton, denoted by result(sk), is equal to head(n), frontier(n) �9 
tail(n). 

Fig. 2. 

/ 
II  

/ 
a 

\ 

b 

frontier(n) = ab 

h~dfn)  = a 

ta i l (n) .  

A skeleton and head, tail and frontier of an internal node. 

D e f i n i t i o n  6. Given a linear grammar G in normal form, a skeleton sk ac- 
cording to G and an internal node n of sk, we define the structural head of n, 
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denoted by headstr(n) and the structural tail of n denoted by tailstr(n) as the 
strings obtained by including in head(n) and tail(n) the symbol �9 which denotes 
the absence of left or right son in the ancestral nodes. 

In Figure 2, given the internal node n of the skeleton, then headstr(n) = a* * 
and tailstr(n) = ha*. 

Defini t ion 7. Let w E ~7". We denote by ter(w) the set of symbols of E which 
appear in w. That is, ter(w) = {a E 2~ I 3wl,w2 E Z* : w = wl �9 a .  w2}. 
Obviously, ter(A) = 0. 

Given a grammar G = (N, .S, P, S) and A E N ,  we denote by ter(A) = 
UwEL(A) ter(w). 

3 A l g e b r a i c  a n d  s t r u c t u r a l  c h a r a c t e r i z a t i o n  o f  T S D L  

l a n g u a g e s  

Radhakrishnan and Nagaraja [Ra8?,RN8?,RN88] have proposed different regular 
and even linear language classes which can be inferred from positive strings. 
Furthermore, they have proposed a structural definition for the new classes. 
In what follows, we propose an extension from their methods to enlarge the 
class, and we focus on linear languages. One of the most important problems to 
deal with linear languages is the ambiguity problem, that is different skeletons 
with the same result. In order to obtain an efficient method to recognize similar 
structures we need to impose a condition which we have named strong backward 
determinism and we define it as follows. 

Defini t ion 8. Let G = (N, E, 19, S) be a linear grammar in normal form. G is 
said to be a strongly backward deterministic grammar if Vw E ~*, A ~ w and 

G 
B ~ w implies that A = B. Moreover, the A-tree with result w is unique. 

G 

Obviously, every strongly backward deterministic grammar is an unambiguous 
grammar. 

Def ini t ion 9. Let G = (N, 27, P, S) be a linear grammar in normal form. G is 
said to be a Terminal and Structural Distinguishable Linear (TSDL) grammar 
if the following conditions are fulfilled: 

1. G is strongly backward deterministic. 
~. Vii, B, C E N such that 

(A--- taB ^ A ~ a C  E P )  V ( A o B a  ^ A - - r C a  E P )  

then ter(B) ~ ter(C). 

A language L is Terminal and Structural Distinguishable Linear (TSDL) if 
there exists a TSDL grammar G such that L = L(G). 

We can give the following pumping lemma, which characterizes TSDL lan- 
guages, by using some substring properties from tile definition that we have 
given beh~re. 
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L e m m a  I .  Let  L be a T S D L  language over .S*. Then V u l , v l , u 2 , w , w , z  E 27* 
the following result holds 

UlWVl, U2WV2 E L ~ ( u l z v l  E L r u2zv2 E L) .  

proo/. 
Let us suppose that L = L(G) with G a TSDL grammar. The derivation 

trees for ulwvl and u2wv2, according to G, are the following ones 
s s 

w w 

Since G is a TSDL grammar it is strongly backward deterministic, and A = B 
in the previous derivation trees. Hence, UlZVl and u2zv2 are or are not in L 
depending on the existence of the derivation A :~ z. 

G 
Q 

Example  1. The following languages are not TSDL languages. Observe that  we 
propose examples of finite, regular, even linear and linear languages which are 
not TSDL languages and we prove it by applying the previous lemma. 

- {aab, aaabb, aabb}. In this case it is enough to take Ul = a, vl = A, u2 = aa, 
v2 = b, w = ab and z = abb 

- { a a b } U a a a b * .  By taking Ul = a, vl = A, us = aa, v2 = b, w = a b a n d  
z = abb, a contradiction appears against the lemma. 

- {a~n+lb 2n} U {a2nb2n+l}. Here we take ul = aa, Vl = bb, us = a, v2 = bbb, 
w = aaabb and z = aabbb. 

- {anb 2n+1} U {an+lb2n}. In this case ul = aa, vl = bbb, us = aaa, v2 = bb, 

w = abbbb and z = aabbb. 

T S D L  languages form a class which intersect with finite languages, regular 
languages, even linear languages and linear languages, but  do not properly con- 
tain any of them. We have given some examples which prove the non proper 
inclusion property. In Figure 3 we show the relationships between T S D L  lan- 
guages and other formal language classes. 

4 Inference m e t h o d  

Once we have defined the T S D L  language class, we propose an inference method. 
In the first place, we propose an equivalence relationship between the internal 
nodes of the skeletons. Later,  the proposed algorithm calculates the equivalence 
classes according to the previous relationship and then induces a T S D L  grammar 
from tile equivalence classes. 



Fig. 3. 

Finite 'I)L lane u q u  

Regular languqes / line~ttllUaJes / 

/,i.~n"/anguales 

168 

TSDL languages in relationship with other formal language families. 

Def in i t ion  10. Let G be a TSDL grammar and S K  a nonempty set of skeletons 
according to G. We can define an equivalence ~lationship between the internal 
nodes o / the  skeletons as follows: 

n = m if and only if one of the following conditions is fulfilled: 

1. f ron t i e r (n )  = . front ier(m).  

2. headstr(n)  = headstr (m)  A 
t e r ( / ron t i e r (m)  ). 

ta i is tr(n)  = ta i l s t r (m)  ^ ter( f ront ier(n)  ) = 

In Figure 4 we propose the inference method and we give the following ex- 
ample to apply it 

Example 2. Let us take the language {a~b 2i : i )_ 1}. We provide the following 
skeletons to the learning algorithm as input data: 

A 
\ 

b / 
a 

\ 
b 

A 

I 
b 

b 

In the first step, the algorithm enumerates the internal nodes as follows: 
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I n p u t  : A set of skeletons S K  = { sk i , . . .  , sk , }  where every skeleton sk~ is linear 
in normal form and none contains the label A. 

O u t p u t  : A TSDL grammar G in normal form, where Vsk~ E SK, result(sk~) E L(G). 

M e t h o d  : 

(1) Enumerate the internal nodes of every skeleton ski. So, internal node n O. 
is the j t h  internal node of i th  skeleton from root to leaves. 

(2) Calculate the structural information of every internal node 
( ]teadstr(nij ), frontier(  nij ), tailstr( nlj )). 

(3) Calculate the relationship - between internal nodes. 
(4) Enumerate every equivalence class SKt ,  S K 2 . . .  Sl(t  with I _< n. Every equivalence 

cl~qs which contains a skeleton root (i.e. ski1) is labelled with S. 
(5) Substitute every internal node by its equivalence class 

(every skeleton is transformed into a derivation tree). 
(6) Obtain a grammar G from the derivation trees. 

endMethod 

Fig. 4. TSDL languages inference method. 

n lj 

hi4 I ~  

a ~  n l$ 

b 

n 2 j  

I 
b 

Then, the structural information of every internal node is showed in the next 
table. 
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The equivalence 

r i l l  

h i2  

n13 
h i4  

h i5  

h i6  

n21 

n22 

n23 

headstr tailstr frontier ter(frontier) 
)~ )~ aabbbb {a, b} 
a * abbbb {a, b} 

a* b* abbb {a, b} 
a * * bb* abb {a, b} 

a * *a *bb* bb {b} 
a * *a* b * bb* b {b} 

)~ )~ abb {a, b} 
a * bb {b} 
a* b* b {b} 

classes induced by the relationship are 

SKi = {nll,n21,n14} 
s g 2  = {m6,  n23} 
SK3 = {n22, ms} 
SK4 ---- {hi2} 
SK5 = {ms} 

So, we can make the following replacement in order to label the auxiliary 
symbols SK1 = S, SK4 = A, SK5 = B,  SK3 = C and SK2 = D. The output 
grammar is the following one: 

S -~ aA l aC 
A -}  Bb 
B -}  Sb 
C ~ D b  
D --+ b. 

4.1 Convergence  and  ident i f icat ion in the  l imit  

Once we have presented the inference algorithm, we are going to prove that 
it converges to the target grammar if enough information is presented. Here, 
the information presentation is structural. Under this protocol, we prove that 
the proposed algorithm idcntifics any T S D L  grammar ill the limit [Go64]. The 
proof is based on the existence of a structural characteristic set for any T S D L  
grammar in normal form. We give the construction algorithm for such a set by 
the following lemma 

L e m m a  2. Let G be a T S D L  grammar and L = L(G) .  Then there exists a finite 
set of skeletons according to G such that if  it is given as input to the proposed 
inference algorithm the output is a grammar G ~ which is isomorphic to G. 
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Proof. 
Let G = (N, 27, P, S). For every auxiliary symbol A E N, its minimal struc- 

tural information can be calculated as follows: 

- Take tile minimal derivation path in which A appears. That is S :~ aAfl =~, w 
G G 

with w E 27* and it is the shortest derivation path. 
- Construct the derivation tree according to the previous derivation. 
- Calculate headstr(A), tailstr(A) and frontier(A) as in skeletons. 

Since G is TSDL, so it is strongly backward deterministic, then the set of 
skeletons induced by the derivation trees have the property that if internal nodes 
ni and nj are labeled with different auxiliary symbols, then 

1. frontier(ni) # frontier(nj), and 
2. headstr(ni) = headstr(n~) A tailstr(ni) = tailstr(nj) =} 

=~ ter(frontier(ni ) ) # ter(frontier(nj ) ). 

If 

S ~a alAlfll  ~a '"~a anAn3,, ~a aA3 ~ aw3 

and 

are derivations with A # B, then ter(w) # ter(w') and A and B are not 
related under =. 

So, the algorithm correctly distinguishes two different internal nodes asso- 
ciated to two different auxiliary symbols. 

On the other hand, let us suppose that, in the skeleton set, two different 
internal nodes, nl and n j, are labeled by the same auxiliary symbol. Then one 
of the following conditions is fulfiled: 

1. frontier(ni) = frontier(hi). This condition can be true given that we have 
selected the shortest derivations for every symbol. 

2. 3nk : nk ~ ni A nk -- nj. So nl =- nj. 

From the previous conditions we can affirm that the algorithm correctly 
relates those internal nodes induced by one auxiliary symbol. 

We can conclude that if the skeleton set we have defined is given as input data 
then every auxiliary symbol in the grammar is represented and the algorithm 
correctly distinguishes each of them. 

[] 

From Lemma 2, we can conclude that the algorithm identifies any TSDL 
grammar in the limit. Here, the proof is trivial given that if every skeleton string 
is presented then sooner or later the algorithm will work with a characteristic 
set as input data and, from Lemma 2, it will output the target grammar. Hence, 
we have the following theorem 

T h e o r e m  1. The proposed algorithm identifies any TSDL language in the limit 
if structural information is presented. 
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4.2 Complexity analysis 

Let us suppose that the language to be identified is defined over the alphabet 
27, with [ 27 [= n. The size of an input sample S K  is defined by the number of 
internal nodes that it contains. In linear languages the number of internal nodes 
of a skeleton is equal to the length of its result. So, we can establish 

I S K  I= ~ I f ront ier(sk i ) I= m. 
ski ESK 

Let k be the size of the maximum length string in the input data. 
We can establish the time complexity of the algorithm step by step as follows: 

1. S tep  1. The enumeration of every internal node takes as much time as 
reading all the skeletons. So the time complexity is o(m).  

2. S tep  2. As in the previous step, here the algorithm only needs reading all 
tile skeletons once. Observe that we can store the headstr and tailstr of 
every internal node by reading the skeleton. Later, the calculation of every 
front ier  and its terminals can be established by applying the definition we 
have given in section 2. In this case the time complexity is O(m). 

3. S tep  3. The relationship = is established by comparing the structural infor- 
mation of every internal node. The algorithm makes at most m x m compa- 
risons. For every comparison, the strings tailstr, headstr and frontier have 
k as maximum length and ter(frontier) has n as maximum size, so the time 
complexity is O(m2(k + n)). 

4. S tep  4. As in step 1, this takes time complexity O(m) given that the number 
of equivalence classes is less than or equal to m. 

5. S tep  5. Again, as in step 4, it has time complexity O(m). 
6. S tep  6. As in steps 1, 4 and 5, the time complexity is O(m). 

The space complexity takes into account the necessary space to storage the 
structural information of every internal node. Let l be the number of skeletons 
to be processed, then tile necessary space of a skeleton sk is 

I f  ront ier(  sk ) ] 

i .  
i---I 

This space is O(k2). So, tile total space is O(k21). 

T h e o r e m  2. Let S K  be a set ol skeletons given to the proposed algorithm as 
input and defined over an alphabet with n symbols. Let m be the size of SK ,  let 
k be the size of the maximum length string in S K  and let l be the number of 
skeletons in S K .  The proposed algorithm has time complexity O(rn2 ( k + n ) ) and 
.space complexity O( k21). 
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5 Conclusions and future work 

We have presented a new language class which can be inferred from positive 
structural information. We think that tile proposed method can be applied to 
other classes and our future work will focus on this. Tile main advantage of the 
method is that it doesn't need negative data, this is important when working 
with non regular languages and structural information, given that the meaning 
of negative examples can be taken as good strings with bad skeletons or simply 
bad strings. 

The complexity of the method and the method itself makes its implementa- 
tion relatively easy. It is important for real tasks as picture description languages 
[RN88] or transduction tasks in which left and right linear productions can be 
taken as input/output strings. 
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