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Abstract. This is a preliminary work in which we propose a variant
of P systems by adding in every region a dynamic engine that allows
the change of the internal rewriting rules along the computation time,
obtaining in this way a new family of P systems with adaptation to
changing environments. They will be called adaptative P systems. Here,
the engine that we propose to act inside every membrane is based on
learning algorithms under the grammatical inference framework. The
behavior of every region changes according to the information received
from the external environment and the internal regions.

1 Introduction

P systems [2,13] have been proposed as a computational mechanism with high
parallelism inspired by the membrane structure of the cell. In the recent times,
several variants of P systems motivated by biological or formal language theory
aspects have been proposed. We will refer, among others, to Generalized P-
Systems [5], Hybrid P-Systems [7], Gemmating P-Systems [1], Tissue P-Systems
[8], P-Systems with carriers [9], etc. Here, we will propose a new variant of P
systems based on the information received outside the external membrane and
on the way the system interacts with this information. Our model is inspired by
systems that learn, as proposed in the artificial intelligence framework. We refer
to [11] for a formal introduction to such systems.

It is a fact that the external information received by the living cell can change
its behavior drastically (e.g., this is a common situation in virus attacks or cancer
diseases). The system has to adapt itself to the new situation or it could be
damaged. We try to explore, under a formal framework, the generative capacity
of P systems in such situations. Furthermore, we initiate an exploration beyond
recursively enumerable languages by setting this framework to several hierarchies
proposed in classical computability theory, for example the arithmetic hierarchy
[15].

The structure of this work is as follows: First, we introduce some basic con-
cepts and notation about formal language theory, P systems and inductive in-
ference systems. Then, we introduce the simplest model to work with external
input and we prove some equivalence properties with respect to general P sys-
tems. We introduce more sophisticated P systems by adding some dynamics in
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the internal rules by using learning engines (inductive inference algorithms). We
relate some properties of these systems with some language classes defined in
oracle computation models given by classical recursion theory. Finally, we will
overview some future research guidelines and discussion about this work.

2 Basic Concepts

First, we refer to [6] for basic concepts on formal language theory. Let V be an
alphabet and V ∗ the set of all strings (words) defined over V . The empty string
will be denoted by ε and V + = V ∗ − {ε}. For any string x ∈ V ∗, we denote by
perm(x) the set of permutations over the string x. The set of segments of any
string x is denoted by segment(x). Given any string x, |x|a denotes the number
of occurrences of the symbol a in x. A language L is any subset of V ∗ and
segment(L) =

⋃
x∈L segment(x). Given any set A, P(A) will denote the power

set of A. A family of languages can be defined by using some characterization
results on formal grammars or abstracts machines. We denote the family of
recursively enumerable languages by RE .

Now, we introduce some basic concepts about P systems. A general P system
of degree m, according to [13], is a construct

Π = (V, T, C, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), i0),

where:

– V is an alphabet (the objects)
– T ⊆ V (the output alphabet)
– C ⊆ V , C ∩ T = ∅ (the catalysts)
– µ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i
– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the

ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (written u → v) where u is a string over V
and v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving
action).

– i0 is a number between 1 and m and it specifies the output membrane of Π;
it can also be equal to ∞, and in this case the output is read outside the
system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system and arranging them in the leaving order (if several objects
leave the system at the same time then permutations are allowed). The set of
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numbers that represent the objects in the output membrane i0 will be denote
by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for halting
computations. We suggest to the reader Păun’s book [13] to learn more about P
systems.

The next ingredient that supports our work is a learning system. This is a
classical topic in artificial intelligence. There have been different proposals of
learning systems based on different theories. Here, we will fix our attention to
inductive systems. The motivation to use this approach will be explained later.
First, we define an inductive learning paradigm through the following items:

1. A naming function to design hypotheses and target concepts. Hypotheses
and concepts are formal languages defined over a fixed alphabet. Mainly, the
naming function can be referred to generators (any language is defined by
some construct that generates it) or acceptors (any language is defined by
abstract machines like Turing machines or finite automata).

2. An information protocol to present examples and/or counterexamples of the
target concept. The examples are those strings that belong to the target
language (they will be represented by a superscript +) while the counterex-
amples are strings out of the language (they will be represented by the
superscript −).

3. A success criterion for the task. As in optimization problems the main success
criterion are identification (the learning system must guess the exact target
language) or approximation (some error in the symmetric difference between
the target and the guess is permitted).

When the target languages are represented by formal grammars and/or Tur-
ing machines, then the inductive learning paradigm becomes a grammatical in-
ference one [16].

An interesting learning criterion is the identification in the limit proposed
by E.M. Gold in 1967 [4]. The approach is the following: Let L be a family of
recursively enumerable languages and L ∈ L (the target language). An algorithm
A identifies L in the limit if A produces a sequence H1, H2, ..., Hi, ... such that
for a given integer i we have Hi = Hj whenever j ≥ i and Hi = L. Here, the
hypothesis sequence is produced from an information source that gives to A some
examples (and possibly counterexamples) of the language L. We will say that
an inference algorithm is incremental if every output hypothesis is constructed
from a previous one and new input data.

A well known result is that the family RE is identifiable in the limit from
examples and/or counterexamples [4]. The proof follows from an enumeration
of Turing machines and the subsequent hypothesis changes according with the
information received so far. On the other hand, an algorithmic technique based
on Nerode’s congruences was proposed by Oncina and Garćıa to identify any
regular language in the limit in polynomial update time [10].

Finally, it can be argued that any system that learns can be viewed as an
abstract machine with an oracle [15]. So, different results from computability
theory about relativized computation can be applied to learning systems.
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2.1 General P Systems with Covering Rules

Now, we will introduce a variant of P systems by defining a new kind of evolution
rules that we will name covering rules. A covering rule will be in the form u → v
or u → vδ where u = u1u2 . . . un with ui ∈ P(V ∗) and v is a string over
{P(V ∗)here, P(V ∗)out, P(V ∗)inj

} where the semantics of the last set is similar
to the basic definition except that we introduce languages instead of symbols. So,
for example, the rule ab∗ → a∗

here in region i means that all symbols b together
with one symbol a are replaced by symbols a. For instance, using this rule, abbbb
is substituted by aaaaa. Another example could be the rule {anbn | n ≥ 1} →
c∗
outdhere(ab)∗

ink
and it means that in the region where the rule is associated,

every pair of symbols a and b is replaced by two symbols c which are sent out
the region, one pair of symbols a and b which is sent to the region k and, finally,
after making the substitution on all pairs one symbol d is produced in the current
region.

The order in the covering rules is important. For example, the rule ab∗c∗ →
c∗
hered

∗
here means that set of symbols b and c (if a symbol a is presented) is sub-

stituted as follows: the unique symbol a disappears, every symbol b is substituted
by a symbol c and every symbol c is substituted by a symbol d.

The term covering refers to the situation in which the rule covers an undefined
number of objects. We will make use of such rules in the next section.

3 AP Systems with Static Rules

Our purpose here is to incorporate external information in P systems in order to
obtain dynamic systems that change during the computation. Given that there
exist different ways and choices to make so, we will introduce different types of
P systems. Anyway, there is a feature common to all of them: the system adapts
itself to environment changes. Informally, we say that a P system is an AP sys-
tem if the set of internal rules of every region changes during the computation
(here AP means P systems with adaptation or adaptative P systems). Our mo-
tivation in this work is the study of the relationship between learning strategies
and adaptation in P systems. Other approaches to different AP systems will be
discussed in the conclusions section.

First, we consider the case that external information only changes the active
rules of every membrane in the system. So, we will provide an external alphabet
and a finite set of evolution rules to manage external information. Formally, the
P system is defined as

Π = (V, T, C, E, µ, wE , w1, . . . , wm, (R1, ρ1, γ1), . . . , (Rm, ρm, γm), i0),

where all elements are defined according to the general setting, except E
(the external input alphabet) with E ∩ V = ∅, and γi that denotes a finite set of
evolution rules of the form u → v where u is a string over (E ∪ V )∗E+(E ∪ V )∗

and v = v′ or v = v′δ where v′ is a string over {ahere, aout, ainj | a ∈ (V ∪E), 1 ≤
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j ≤ m}. The string wE will denote (in a multiset way) the objects that there
exist in the environment where the P system acts.

A configuration of the system will be defined by the tuple (µ′, wiE
, wi1 , . . . ,

wik
). The computation will be performed in a way similar to the general setting

with the following exceptions:

1. At any computation step, an object from wE can enter in region 1 through
the skin membrane. In this case, the rules of γ1 can start to manipulate those
objects. The rest of the rules in the regions where the external objects have
entered are inhibited (this means that the rules of ρi will not be applied even
if they can). If all the objects enter in region 1 at any computation step we
will say that the system works with complete information loading.

2. If any object from wE enters in region 1, then it can disappear from wE

(nonpersistent environment) or remain in wE (persistent environment).
3. The result of the computation is collected in region i0 or outside the system.

Here, we have to make the following remark: if the system works within
a persistent environment, then it will never halt (given that the external
objects enter region 1 at any computation step and rules from γ1 work with
them). In such situation the halting criterion is substituted by an inhibition
one. We will accept the result of a computation only when no set of rules ρi

can be applied again.

The latter systems, according to the previous definition and remarks, will be
called simple AP systems. Let us consider an example of a simple AP system
working with and without persistent environments.

Example 1. Let Π be the simple AP system shown in Figure 1.

bout boutc

in
2

caab

b dout

2

c

b

1

aaa

Fig. 1.

Here, the external input alphabet is {a}, i0 = ∞ and the output alphabet is
{d}. Let us analyze the behavior of the system in different situations.

First, let’s consider that Π works in a nonpersistent environment and com-
plete information loading. We will set the state of the system by defining the
strings wi and wE at every computation step. At step 0 wE = aaa, w1 = b and
w2 = c. At step 1 every symbol from the external environment enters in region
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1 (complete information loading) and we have wE = ε (nonpersistent environ-
ment), the object b in region 1 is transformed in d and exits the system; at the
same time the object c in region 2 is transformed in two objects b that go to
region 1 so w1 = aaabb and w2 = ε. At step 2, in region 1 only the rule that
works with external objects can be applied so two objects a and one object b
are replaced by one object c that goes to region 2. Observe that the rest of the
objects in region 1 are not transformed because the rule that works only with
internal objects are inhibited due to the presence of external objects. So, at step
2, output = d, wE = ε, w1 = ab and w2 = c. At step 3, only the rules from region
2 can be applied, so the object c is transformed in two objects b and leave the
region 2 to region 1. In this case, output = d, wE = ε, w1 = abbb and w2 = ε.
This is a stationary situation, given that no rule can be applied again (the rules
from region 1 keep on inhibited due to the presence of object a).

Now, let us consider that Π works in a persistent environment and complete
information loading. The sequence of the computation is as follows: At step 0
wE = aaa, w1 = b and w2 = c. At step 1 every symbol from the external
environment enters in region 1 (complete information loading) and we have wE =
aaa (persistent environment), the object b in region 1 is transformed in d and
exits the system, and the object c in region 2 is transformed in two objects b
that go to region 1, so w1 = aaabb and w2 = ε. At step 2, in region 1 only
the rule that works with external objects can be applied so two objects a and
one object b are replaced by one object c that goes to region 2. Observe that
the rest of the objects in region 1 are not transformed because the rules that
work only with internal objects are inhibited due to the presence of external
objects. Again, every object from the environment goes into region 1 (persistent
environment). So, at step 2, output = d, wE = aaa, w1 = aaaab and w2 = c. At
step 3, the rules from region 2 can be applied, so the object c is transformed in
two objects b which leave the region 2 to region 1. On the other hand, in region
1 two objects a and one object b go to region 2 and again every external object
enters in region 1. In this case, output = d, w1 = aaaabb and w2 = c. We can
observe that the output of the system is the same as in the previous case but Π
does not enter a stationary situation, given that there will be always a sufficient
number of objects that can be transferred to region 1 and, later, to region 2.

If the system Π works with non complete information loading and persistent
environment, then eventually, the output of the system is {dn | n ≥ 1}, given
that whenever there be no object a in region 1 an object b can be output as an
object d.

We can state the following results to relate these systems with the general
ones.

Lemma 1. Any simple AP system working in any nonpersistent environment
can be simulated by a general P system with covering rules.

Proof. First, we will consider that the system works with complete information
loading and we take an arbitrary simple AP system Π defined by the tuple

Π = (V, T, C, E, µ, wE , w1, . . . , wm, (R1, ρ1, γ1), . . . , (Rm, ρm, γm), i0).
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We construct a general P system Π ′ as follows

Π ′ = (V ∪ E, T, C, µ′, w0, w1, . . . , wm, (R0, ρ0), (R′
1, ρ

′
1), . . . , (R

′
m, ρ′

m), i0),

where µ′ = [0µ]0, w0 = wE , R′
i = Ri ∪ γi ∪ CRi for 1 ≤ i ≤ m, where CRi =

{aa∗
1 . . . a∗

n → ahere(a∗
1)here . . . (a∗

n)here | a ∈ E, ai ∈ V }, ρ′
i includes ρi and

γi > CRi > Ri, R0 = {a → ain1 | a ∈ E} ∪ {a → aout | a ∈ V } and ρ0 = ∅.
The general P system Π ′ defined before is constructed by adding a new skin
membrane (membrane 0) to system Π and the evolution rules that send the
original external objects to the old primary region through membrane 1.

The behavior of the system Π ′ is equivalent to the simple AP system Π given
that the external objects enter in region 1 and then disappear. The problem with
priorities is the following: We must inhibit all the rules that do not work with
objects from the external environment but now we have no difference between
external and internal objects. We solve this situation as follows: First, we give
maximum priority to all the rules from γi with respect to rules from CRi and
Ri. So, the rules that manipulate external objects are used first. The covering
rules from CRi are used to lock the rest of internal symbols if a external symbol
is present in the region and cannot be manipulated by rules from γi. That is why
CRi > Ri. So, rules from Ri are only used when no external object are present
in the region.

Now, let us suppose that Π works with non complete information loading.
In this case we propose a construction for a general Π system with covering
rules as in the previous case with the following exception: The set of rules from
R0 described in the previous case is substituted by the set R0 = {x → in1(x) |
x ∈ segment(perm(wE)) − {ε}} ∪ {x → here(x) | x ∈ segment(perm(wE)) −
{ε}} ∪ {a → aout | a ∈ V }. The transformation in1(x) is defined as in1(x) =
x1in1

x2in1
. . . xnin1

with x = x1x2 . . . xn and here(x) is defined as here(x) =
x1here

x2here
. . . xnhere

with x = x1x2 . . . xn.
The effect of the new rules of R0 is just considering all the combinations of

symbols that can enter in region 1 from the environment (even the case where
no symbol enters this region). 
�

Now, let us see an example of the constructions that we have proposed in
Lemma 1.

Example 2. Let Π be the simple AP system from example 1. The equivalent
general P system with covering rules and working in a non persistent environment
and complete information loading is showed in the Figure 2.

On the other hand, the equivalent general P system with covering rules and
working in a non persistent environment and non complete information loading
is showed in the Figure 3.

Now we give a result similar to Lemma 1, but for the case of persistent
environments.

Lemma 2. Any simple AP system working in any persistent environment can
be simulated by a general P system with covering rules.
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a in
1

a

b bout
c cout

d dout b dout

bout boutc
herea        b*        c*        d*here here hereab*c*d*

herea        b*        c*        d*here here hereab*c*d*

in
2

caab

aaa

c

b

1

0

2

>

>

>

Fig. 2.

Proof. Let us take an arbitrary simple AP system Π defined by the tuple

Π = (V, T, C, E, µ, wE , w1, . . . , wm, (R1, ρ1, γ1), . . . , (Rm, ρm, γm), i0).

We construct a general P system Π ′ as in the proof of Lemma 1, but the
difference is the set of rules R0. We have two different cases. First, if the system
works with complete information loading, then R0 = {a → aain1 | a ∈ E}∪{a →
aout | a ∈ V } and ρ0 = ∅. Second, if the system works with non complete
information loading, then the set R0 is defined as R0 = {x → here(x)in1(x) |
x ∈ segment(perm(wE)) − {ε}} ∪ {x → here(x) | x ∈ segment(perm(wE)) −
{ε}} ∪ {a → aout | a ∈ V }.

The effect of the new rules of R0 is just considering all the combinations of
symbols that can enter in region 1 from the environment (even the case where
no symbol enters this region) and keeping the original set of objects of the
environment in region 0. 
�

Now, let us examine an example of constructions as in the proof of Lemma 2.

Example 3. Let Π be the simple AP system from example 1. The equivalent
general P system with covering rules and working in a persistent environment
and complete information loading is showed in Figure 4.

The corresponding version with non complete information loading is shown
in Figure 5.

4 AP Systems: The Learning Approach

Our next step in studying how the external information influences the behavior
of a P system is to allow that such information not only activates a finite number
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Fig. 3.
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2

>

>

>

Fig. 4.

of extra rules and inhibit the others, but changes the rules that were working up
to that moment. Here, we use a framework similar to those of learning systems.

We define an AP system of degree m based on learning engines as the fol-
lowing tuple:

Π = (V, T, C, E, µ, L+
E , L−

E , �, w1, . . . , wm, 1, . . . ,m, i0),

where L+
E and L−

E are (possibly non finite) languages over E with L+
E ∩ L−

E = ∅,
i includes Ri and ρi which are defined as in the general case, as well as Ai
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Fig. 5.

which is a deterministic finite automaton. We make the following remarks with
respect to the simple case:

1. The words from L+
E and L−

E do not mean multisets in the analysis of Ai but
in the evolution rules.

2. Eventually, any string from L+
E ∪ L−

E can enter into the system and, later, it
can move to other regions according to the membrane structure no matter
which are the rules working in every region.

3. We say that the AP system is incremental if at every computation step only
one string from the environment enters into the system. Otherwise, only a
finite number of strings do enter.

4. Once any string wi enters in region j then it is analyzed by the automaton
Aj . If wi ∈ L(Aj) and wi ∈ L−

E or wi /∈ L(Aj) and wi ∈ L+
E , then we say

that region j reacts to the environment. Observe that this way to analyze the
string could be substantially changed by using multiset automata as those
described in [3].

The last ingredient that we have added to the system is �, that means a
learning strategy (under our approach, a grammatical inference algorithm).

We propose two different ways of changing the rules in every region: The
static version means that there is a predefined set of rules that only are activated
whenever the region reacts to the environment. We denote these systems as AsP
systems. The dynamic version means that, in every reacting region, there will
be a transformation over the set of evolution rules. We denote these systems
as AdP systems. Formally, in an AsP system i = (Ri, ρi, Ai, γi) where γi is a
finite set of rules as in the simple AP system case. By the other hand, in an AdP



P Systems with External Input and Learning Strategies 351

system i = (Ri, ρi, Ai, Ti) where Ti is an algorithm that transform the set of
rules Ri and the set of priorities ρi into new sets R′

i and ρ′
i.

4.1 Using Regular Learners

As a simple example of the systems described before, we will make � to be
a grammatical inference algorithm that identifies any regular language in the
limit. In the next section, we will use universal learners (inference methods that
identify any recursively enumerable language in the limit). The learning of reg-
ular languages has been deeply studied along the time. We can mention, among
others, the works by Trakhtenbrot and Barzdin [18], and Oncina and Garćıa [10],
where proposes inference algorithms that learn regular languages and identify
them in the limit if a complete sample1 is given as input. The referred algorithms
are not incremental. Examples of incremental algorithms that identify any reg-
ular language in the limit if all the examples are given in a lexicographic order
are the one proposed by Porat and Feldman [12] and Sempere and Garćıa [17].
The only request of these algorithms is that a complete presentation of E∗ must
be given.

Example 4. Let the AsP system Π be defined as follows

Π = (V, T, C, E, µ, L+
E , L−

E , �, w0, w1, (R0, ρ0, A0, γ0), (R1, ρ1, A1, γ1), ∞),

where V = {a, b, e}, T = {a, b}, C = ∅, µ = [0[1]1]0, E = {c, d}, L+
E = c∗, L−

E =
L+

E , w0 = ab, w1 = a, ρ0 = ρ1 = ∅, and A0 and A1 are trivial automata accepting
the empty language. The rules of γ0 are ac → ahereein1 and bd → bhere. The
only rule of γ1 is ae → ahereeout. R0 is defined by the rule abe → aherebhereeout

and R1 is empty. Finally � is the learning algorithm proposed in [17], where the
sequence of hypotheses and words is showed in Figure 6.

The behavior of Π is the following: According to Figure 6, regions 0 and 1
will react when the external input strings are +c,−d, −dc and −dd. The rest of
strings are accepted by the finite automata that the learning algorithm outputs
as showed in Figure 6. So, the last string that makes any region react is −dd and
then the system arrives to the correct automata that can accept and reject the
rest of strings from L+

E and L−
E . The rules of γ0 transform every symbol d from a

string that makes the region react into a symbol e which is sent to region 1. The
symbols c are eliminated. In region 1, every time that a string makes reaction,
the symbol e is sent to region 0. So, when the system arrives to a stationary
state (i.e., no more reactions are produced), there will be as many symbols e in
region 0 as the total number of symbols d that composed the reacting strings.
In a simplified manner, the systems behavior is a counter for the symbols d

1 A complete sample for a target language is a finite set of strings such that if given as
input to the learning algorithm, then it outputs the target language in finite time.
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c,d

c

c,d

λ+
c+

d−
cc+

cd−

dc−

c
d c

c

dd−

dc,dc,d

d

d

Fig. 6. The hypothesis sequence according with complete ordered information presen-
tation using a learning algorithm for regular languages [17]

needed to identify the regular language in the limit. Observe that if the learning
algorithm does not converge to a correct identification, then the system does not
output so many symbols.

Example 5. Let the AdP system Π be defined as follows

Π = (V, T, C, E, µ, L+
E , L−

E , �, w0, w1, (R0, ρ0, A0, T0), (R1, ρ1, A1, T1), ∞),

where V = {a, b}, T = {a, b}, C = ∅, µ = [0[1]1]0, E = {c, d}, L+
E = c∗,

L−
E = L+

E , w0 = ab, w1 = ab, ρ0 = ρ1 = ∅, and A0 and A1 are trivial automata
accepting the empty language. The algorithms T0 and T1 are showed in Figure
7. R0 is defined by the rule ab → aherebhereaout and R1 is defined by the rule
ab → aherebherebout. Finally � is again the learning algorithm proposed in [17].

Observe that, according to algorithm T0, every time that the region 0 reacts
to the environment, the number of symbols a presented in the region and sent to
other regions is increased. A similar situation happens in region 2 with symbols
b. If region 2 arrives to 5 symbols b, then it is dissolved. So, the number of wrong
hypotheses that the learning algorithm outputs is limited in region 2.

4.2 Using Universal Learners: A Characterization of the Arithmetic
Hierarchy

In the previous section we have used learning algorithms for the class of regular
languages. Now, we introduce more sophisticated learners which are able to
identify any recursively enumerable language in the limit (universal learners).
Most of these algorithms are based in enumeration techniques such as those
described in [11] or [4]. The effect of the learning algorithms over AsP or AdP
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Input: An evolution rule u → v over the alphabet V = {a, b}
Output: An evolution rule u′ → v′ over the alphabet V
Method

If v = wδ then output(u → v)
For every symbol ahere in v substitute it by ahereahere in v′

For every symbol aink in v substitute it by ainkaink in v′

For every symbol aout in v delete it v′

For every symbol bhere in v substitute it by bhere in v′

For every symbol bink in v substitute it by bink in v′

For every symbol bout in v delete it v′

Output(u → v′)
endMethod

Algorithm T0

Input: An evolution rule u → v over the alphabet V = {a, b}
Output: An evolution rule u′ → v′ over the alphabet V
Method

If v = wδ then output(u → v)
If |v|b ≥ 5 then Output(b → bδ)
For every symbol ahere in v substitute it by ahere in v′

For every symbol aink in v substitute it by aink in v′

For every symbol aout in v delete it v′

For every symbol bhere in v substitute it by bherebhere in v′

For every symbol bink in v substitute it by binkbink in v′

For every symbol bout in v delete it v′

Output(u → v′)
endMethod

Algorithm T1

Fig. 7. Algorithms for the transformation in evolution rules

systems is giving them the power of computing languages beyond RE . In this
situation we can use AP systems as oracle machines as in classical computation
with Turing machines. If we assume that any recursively enumerable language
can be accepted by a general P system according to the literature on membrane
computing, then our purpose is allowing the use of oracles in such systems. In
order to make so, we need to propose new aspects of AP systems:

1. The environment contains strings over any recursively enumerable language.
2. If any region reacts to the environment, then a set of stand by rules are

activated.
3. The region of the skin membrane can outputs strings with some special

marker to make queries.

We will fix our attention to the arithmetic hierarchy [15], and, specifically, to
the hierarchy of language classes Σi. We propose a method in which relativized
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computation can be simulated by using the environment of P systems as oracle
machines.

The following definitions come from classical recursion theory and can be
consulted in any book such as [15]

Definition 1. A language L is recursive if there exists a halting Turing machine
M such that L = L(M). A language L is A-r.e. if there exists a Turing machine
M with a recursive oracle A such that L(M) = L

Definition 2. (The arithmetic hierarchy) Σ0 is the class of recursive languages.
For each n ≥ 0 Σn+1 is the class of languages which are A-r.e. for some set
A ∈ Σn. For all n Πn = co-Σn, ∆n = Σn ∩ Πn.

We propose an AP system architecture to solve problems from Σi. The
scheme that we propose is showed in Figure 8.

external environment

i Σ 1

Σ 0
Σ 2

iL
+

0L
+

1L
+

2L
+

iL
−

0L
−

2L
−

1L
−Σ

Fig. 8. Using the environment as an oracle channel in the arithmetic hierarchy

This system architecture (which is different from tissue P systems [8]) works
as follows. Let us suppose that L ∈ Σ2 and it uses an oracle L′ from RE . The
AP system that we propose for L uses L′ as the environment language and a
universal learner. The learner converges to the correct hypothesis, so every query
can be directly solved by the learner. If we use this system as an output device,
then we can solve languages from Σ3 and, iteratively, from Σi. Given that we
can specialize an AP system for every class of the arithmetic hierarchy, they can
work together by using a common environment and different output alphabets
for every class.

5 Conclusions and Future Research

As we have mentioned at the beginning of this paper, this is a preliminary work
about the possibility of introducing the environment and adaptative engines



P Systems with External Input and Learning Strategies 355

in P systems. We have proposed new features of P systems. First, the role of
covering rules is independent from the environment. The power of P systems
with covering rules must be studied apart from the rest of this work. At the first
sight, it looks that covering rules help to decrease the description complexity of P
systems (we can summarize an undefined set of evolution rules in just one rule).
Our purpose is to start a complete study of covering rules and the effect that
different language families produce in the generative power of P systems (e.g.,
what happens if we restrict covering rules to only regular languages, context-free
languages, or recursively enumerable languages?).

Second, simple AP systems have been defined and we have proposed different
simulation techniques for general P systems.

The definition of AP systems suggests the study of different choices that
we have proposed. The differences between dynamic and static P systems will
be study in future works. The choice about the adaptation triggers should be
compared with other choices (here, we have only used finite automata to handle
the environment information). Here we have used learning engines to introduce
the adaptation of the system to changing environments. We could select other
ways to make achieve this (e.g., neural networks with filtering options). We have
to study different possibilities of such topic. Nevertheless, the main topic in AdP
systems is the definition of transformation algorithms Ti. Here a complete catalog
of choices should be exposed. Mainly, we could manage transduction algorithms,
learning algorithms, or biologically inspired algorithms (e.g., what happens if
splicing operation is applied over the set of evolution rules instead of the set of
objects as described in [14]?). We will return to these topics in future works.
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