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Abstract. In this work we propose a method to infer context-sensitive
languages from positive structural examples produced by linear gram-
mars. Our approach is based on a representation theorem induced by two
operations over strings: duplication and reversal. The inference method
produces an acceptor device which is an unconventional model of compu-
tation based on biomolecules (DNA computing). We prove that a subclass
of context-sensitive languages can be inferred by using the representation
result in combination with reductions from linear languages to k-testable
in the strict sense regular languages.
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1 Introduction

In the recent times, an unconventional theory of computation based on some
biomolecules behavior has been proposed as the research area of DNA compu-
ting [9]. In a wide point of view, DNA computing deals with the capacities of
DNA molecules to make (universal) computations. So, different models have been
proposed in the framework of the formal language theory with some ingredients
of the DNA features in order to process strings. We can mention Watson-Crick
finite automata, sticker systems, splicing systems, Insertion-Deletion systems,
among others. A profound study of these new models has pointed out its capacity
to characterize language classes from Chomsky’s hierarchy and new language
classes which are related to the previous ones. In addition, these new models
have provided a new look to the formal language theory in the sense that they
have provided new operations over strings (splicing, duplication, twin shuffles,
etc.) and new representations for the languages (i.e. circular strings or double
strings). A comprehensive reference in this field is [9].

In this work, we will work with a DNA based computing model, the Watson-
Crick finite automaton (WKFA) [3]. It has been proved that this model is able
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to recognize context-sensitive languages. In addition, the languages accepted by
WKFA can be obtained as the intersection between linear languages and even
linear ones. So, given that these language families have been widely studied in the
framework of Grammatical Inference we can take some advantages of previous
results in order to learn efficiently some language classes which are characterized
by restricted versions of WKFA. Observe that this approach enables the inference
of new language classes which contains non-trivial context-sensitive languages.

The structure of this work is as follows: First we will give basic definitions and
we will fix the notation related to formal language theory and some aspects of
DNA computing used in the sequel. In section 3, we will propose an algorithm to
learn language classes characterized by some restricted versions of the WKFA.
We will prove the identifiability in the limit of these new classes based on the
reducibility of this problem to previously solved ones. We will generalize our
results by providing a learning scheme for different language classes. Finally, we
will show our conclusions and we will provide some future research guidelines.

2 Basic Concepts and Notation

In this section, we will provide some concepts from formal language theory and
DNA computing models. We suggest the books [9] and [10] to the reader.

Formal Languages

An alphabet Σ is a finite non-empty set of elements named symbols. A string de-
fined over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all
the strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will
denote its length by |x|. The set of strings defined over Σ with length equals to
(less than) k will be denoted by Σk (Σ≤k). The empty string will be denoted by
λ and Σ+ will denote Σ∗ −{λ}. Given a string x we will denote by xr the reversal
string of x. A language L defined over Σ is a set of strings from Σ∗.

A grammar is a construct G = (N, Σ, P, S) where N and Σ are the alphabets
of auxiliary and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the
grammar and P is a finite set of productions in the form α → β. We will say
that w1 directly derives to w2, and we will denote it by w1 ⇒

G
w2 if w1 = uαv,

w2 = uβv and α → β ∈ P . We will denote by ∗⇒
G

the reflexive and transitive

closure of ⇒
G

. The language of the grammar is denoted by L(G) and it is the set

of terminal strings that can be obtained from S by applying symbol substitutions
according to P . So, L(G) = {w ∈ Σ∗ : S

∗⇒
G

w}.

We will say that a grammar G = (N, Σ, P, S) is right linear (regular) if every
production in P is in the form A → uB or A → w with A, B ∈ N and u, w ∈
Σ∗. The class of languages generated by right linear grammars is the class of
regular languages and will be denoted by REG. We will say that a grammar
G = (N, Σ, P, S) is linear if every production in P is in the form A → uBv or
A → w with A, B ∈ N and u, v, w ∈ Σ∗. The class of languages generated by
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linear grammars will be denoted by LIN . We will say that a grammar G =
(N, Σ, P, S) is even linear if every production in P is in the form A → uBv
or A → w with A, B ∈ N , u, v, w ∈ Σ∗ and |u| = |v|. The class of languages
generated by even linear grammars will be denoted by ELIN . We will say that
a grammar G = (N, Σ, P, S) is context-free if every production in P is in the
form A → w with A ∈ N and w ∈ (Σ ∪ N)∗. The class of languages generated
by context-free grammars will be denoted by CF .

A context-sensitive grammar is a grammar G = (N, Σ, P, S) where every
production in P is in the form αAβ → αωβ with α, β ∈ (N ∪ Σ)∗, ω ∈ (N ∪
Σ)+ and A ∈ N . If S → λ then S does not appear in the right side of any
other production in P . The class of the languages generated by context-sensitive
grammars will be denoted by CS. A well-known result from formal language
theory is the inclusions REG ⊂ ELIN ⊂ LIN ⊂ CF ⊂ CS.

A homomorphism h is defined as a mapping h : Σ → Γ ∗ where Σ and Γ
are alphabets. We can extend the definition of homomorphisms over strings as
h(λ) = λ and h(ax) = h(a)h(x) with a ∈ Σ and x ∈ Σ∗. The homomorphism
over a language L ⊆ Σ∗ is defined as h(L) = {h(x) : x ∈ L}.

Stickers, Molecules and Watson-Crick Finite Automata

Given an alphabet Σ = {a1, · · · , an}, we will use the symmetric (and injective)
relation of complementarity ρ ⊆ Σ × Σ. For any string x ∈ Σ∗, we will denote
by ρ(x) the string obtained by substituting the symbol a in x by the symbol b
such that (a, b) ∈ ρ (remember that ρ is injective) with ρ(λ) = λ.

Given an alphabet Σ, a sticker over Σ will be the pair (x, y) such that x =
x1vx2, y = y1wy2 with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted

by
(

x
y

)
. A sticker

(
x
y

)
will be a molecule if |x| = |y| and ρ(x) = y, and it will be

denoted by
[
x
y

]
. Obviously, any sticker

(
x
y

)
or molecule

[
x
y

]
can be represented

by x#yr where # /∈ Σ.
There have been different computational models and generating devices that

use stickers and molecules to define formal languages. We will fix our attention
to the acceptor models named Watson-Crick finite automata. A Watson-Crick
finite automaton (WKFA) [3] is a good example of how DNA biological proper-
ties can be adapted to propose computation models in the framework of DNA
computing. WK finite automata work with double strings inspired by double-
stranded molecules with a complementary relation between elements, that is,
the classical complementary relation between DNA nucleotides A-T and C-G.
So, a WK finite automaton has an input double tape which is organized into
upper and lower cells, it has two tape heads that access to the upper and lower
cells and that can move independently and a finite control which holds a state
of the machine during its computation. In addition, the automaton has a transi-
tion function that guides the movements of the machine. The machine works as
follows: initially a sticker or molecule is placed in the double tape (i.e. the lower
strand in the lower tape and the upper strand in the upper tape), the tape heads
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are placed at the beginning of the tape (i.e. pointing out to the first symbol of
every tape) and the finite control holds an initial state. Then, the machine starts
to apply the transition function which is nondeterministic. Every time that the
machine applies a transition then the state in the finite control changes and the
tape heads advance one cell to the right or stay at the same cell independently
(i.e. maybe a transition only moves the upper head or only the lower head or it
can move both heads). The machine stops when no transition can be applied or
the input sticker or molecule have been completely processed. Observe that, in
this case, the machine can halt into an acceptation state. The criterium which is
imposed to accept a sticker is that it has been completely processed, the machine
has stopped within an acceptation state and the sticker is a molecule.

Formally, an arbitrary WK finite automaton is defined by the tuple M =
(V, ρ, Q, s0, F, δ), where Q and V are disjoint alphabets (states and symbols), s0
is the initial state, F ⊆ Q is a set of final states and the finitely defined function

δ : Q ×
(

V ∗

V ∗

)
→ P(Q) (which denotes the power set of Q, that is the set of all

possible subsets of Q). Furthermore, we can impose a normal form such that for

every transition q ∈ δ(q,
(

x1
x2

)
) then |x1x2| = 1. This normal form defines the

so called 1-limited WK finite automata and they were proved to be equivalent
to arbitrary ones [3].

An instantaneous description of the WK finite automaton will be denoted by(
x1
y1

)
q

(
x2
y2

)
, where

(
x1
y1

)
is the part of the sticker which has been processed,

q is the state of the finite control and
(

x2
y2

)
is the rest of the sticker to be

processed. We can relate instantaneous descriptions as follows:
(

x1
y1

)
q

(
x2
y2

)
⇒(

x1v1
y1w1

)
p

(
v2
w2

)
if x2 = v1v2, y2 = w1w2 and p ∈ δ(q,

(
v1
w1

)
. We will denote the

reflexive and transitive closure of ⇒ by ∗⇒.
Given an arbitrary WK finite automaton M = (V, ρ, Q, s0, F, δ), the language

of molecules accepted by M will be defined by the set Lm(M) = {
[
x
y

]
: s0

[
x
y

]
∗⇒[

x
y

]
p with p ∈ F}. The upper strand language accepted by M will be defined

by the set Lu(M) = {x : s0

[
x
y

]
∗⇒

[
x
y

]
p with p ∈ F}. The family of upper

languages accepted by arbitrary Watson-Crick finite automata will be denoted
by AWKu, and it has been proved that AWKu ⊂ CS. That is, WKFA accept
context-sensitive languages in the upper strand. In addition, it has been proved
that context-free languages and AWKu are disjoint classes of languages [7].

In a previous work, we proved that the languages accepted by arbitrary WKFA
can be represented by operations over linear and even linear languages [13]. The
main theorem that supports this statement is the following
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Theorem 1. (Sempere, [13]) Let M = (V, ρ, Q, s0, F, δ) be an arbitrary Watson-
Crick finite automaton. Then, there exists a linear language L1 and an even
linear language L2 such that Lm(M) = L1 ∩ L2.

In [13], we provided an algorithm to construct a linear grammar G1 such that
L(G1) = L1 and an even linear grammar G2 such that L(G2) = L2. It works
as follows: First, we can construct the grammar G1 = (N, V ∪ {#}, P, s0) where
N = Q, s0 is the axiom of the grammar and P is defined as follows

– If q ∈ F then q → # ∈ P

– If p ∈ δ(q,
(

x1
x2

)
) then q → x1 p xr

2 ∈ P .

The language L2 can be defined by the grammar G2 = ({S}, V ∪ {#}, P, S)
where P is defined as follows

– S → # ∈ P

– For every pair of symbols a, b ∈ V , such that (a, b) ∈ ρ, S → aSb ∈ P

In order to characterize the upper strand language we provided the following
result

Corollary 1. (Sempere, [13]) Let M = (V, ρ, Q, s0, F, δ) be an arbitrary WK
finite automaton. Then Lu(M) can be expressed as g(h−1(L1 ∩L2)∩R) with L1
being a linear language, L2 an even linear language, R a regular language and g
and h two morphisms.

Observe that the last result can be obtained by using a morphism h : V ∪
V ′ ∪ {#} → V ∪ {#}, defined as h(a) = h(a′) = a for every a ∈ V where
V ′ = {a′ : a ∈ V }, and h(#) = #. Then, R = V ∗#V ′∗ and g is a morphism
defined as g(#) = λ, g(a) = a and g(a′) = λ for every a ∈ V and every a′ ∈ V ′.

Example 1. Let M = (V, ρ, Q, q0, F, δ) be a WKFA where V = {a, b, c}, ρ =
{(a, a), (b, b), (c, c)}, F = {qf} and δ is defined as follows:

δ(q0,

(
a
λ

)
) = {qa} δ(qa,

(
a
λ

)
) = {qa} δ(qa,

(
b
a

)
) = {qb}

δ(qb,

(
b
a

)
) = {qb} δ(qb,

(
c
b

)
) = {qc} δ(qc,

(
c
b

)
) = {qc}

δ(qc,

(
λ
c

)
) = {qf} δ(qf ,

(
λ
c

)
) = {qf}

It can be easily proved that Lu(M) = {anbncn : n ≥ 1}. Then the corresponding
linear grammar associated with M is the following one, which we will name G1:

q0 → aqa qa → aqa | bqba qb → bqba | cqcb
qc → cqcb | qfc qf → qfc | #
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The even linear grammar associated with ρ is trivially defined by the rules
S → aSa | bSb | cSc | # which we will name G2. Observe that Lm(M) = L(G1)∩
L(G2) while the language Lu(M) is obtained from the strings in L(G1) ∩ L(G2)
by taking only the complete prefixes up to the # symbol. This last operation
can be performed by applying Corollary 1.

From the previous results, it can be proved that upper strand languages accepted
by WKFA can be reduced to regular languages. So, we introduced in the WKFA
model well-known features such as k-testability [14] and reversibility [15]. In
addition, we establish a way to obtain regular-like expressions from WKFA [16].

Local Testability

Here, we will introduce the definition of local testability and local testability
in the strict sense. For any string x ∈ Σ∗ and any integer value k > 0, the
testability vector vk(x) is defined by the tuple (ik(x), tk(x), fk(x)) where

ik(x) =
{

x, if |x| < k
u : x = uv, |u| = k − 1 if |x| ≥ k

fk(x) =
{

x, if |x| < k
v : x = uv, |v| = k − 1 if |x| ≥ k

tk(x) = {v : x = uvw, u, w ∈ Σ∗ ∧ |v| = k}

We will define the equivalence relation ≡k in Σ∗ × Σ∗ as x ≡k y iff vk(x) =
vk(y). It has been proved in [6] that ≡k is a finite index relation and that ≡k

covers ≡k+1.
So, we will say that any language L is k-testable iff it is defined as the union of

some equivalence classes of ≡k. In addition, L is local testable iff it is k-testable
for any integer value k > 0. The family of k-testable languages will be denoted
by k − LT while LT will denote the class of testable languages.

A different kind of testability is the so called testability in the strict sense
which was again proposed in [6]. Here, for any alphabet Σ we will take the sets
Ik, Fk ⊆ Σ≤k−1 and Tk ⊆ Σk. Then, a language L is said to be k-testable in the
strict sense if the following equation holds

L ∩ Σk−1Σ∗ = (IkΣ∗) ∩ (Σ∗Fk) − (Σ∗TkΣ∗).

Observe that, according to the last equation, any word in L with length greater
than or equals to k − 1 begins with a segment in Ik, ends with a segment in Fk

and has no segment from Tk. Any language L is locally testable in the strict
sense iff it is k-testable in the strict sense for any k > 0. The family of k-testable
languages in the strict sense will be denoted by k − LT SS while LT SS will
denote the class of locally testable languages in the strict sense.

It has been proved that k − LT is the boolean closure of k − LT SS [22]. In
addition, both classes k − LT and k − LT SS are subclasses of REG.
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3 Learning Watson-Crick Finite Automata from Positive
Structural Data

In order to learn formal languages accepted by (restricted) WKFA we will use two
operations to represent such languages: duplication and reversal. Once we fix this
representation for formal languages, we can infer restricted versions of WKFA
in order to recognize languages in the upper strand. Our method is a reduction
technique based on the linear and even-linear languages used in Theorem 1 and
Corollary 1. Observe, that a similar approach was employed in [8] where the
authors reduced languages accepted by WKFA to regular languages by using a
technique which is different from the one in [13].

The relation of complementarity that we will use is the trivial identity re-
lation. That is, (∀a ∈ Σ) (a, a) ∈ ρ. The duplication of a string is defined
as duplicate(x) = x#xr . The extension over a set S is trivially defined as
duplicate(S) = {duplicate(x) : x ∈ S}. Observe that this is a linear time
operation.

Our main task is to learn unknown linear languages from the strings obtained
by duplication. Here, we can adopt different solutions in order to carry out
the learning task. First, we can use learning algorithms for subclasses of linear
languages as in [1,2,5]. Another option could be the use of structural information
as in [5]. Observe that the use of structural information has been widely accepted
as an information protocol since Sakakibara’s works about learning context-free
languages [11,12]. We will use structural information in this work in order to
avoid the use of complete data (negative and positive strings). Nevertheless,
the use of any algorithm to infer linear languages from different information
protocols could be easily introduced in our learning scheme.

So, the information given to the learning algorithm will not be the duplicated
strings but the structural information associated with them, according to an
unknown WKFA.

Observe that the structural information from linear grammars allows the
transformation to even linear ones as was shown in a previous work [17]. We
can introduce the reduction in a formal manner as follows: Let us take the linear
structured string w defined over the alphabet Σ, then we can obtain an even
linear structure from w by applying the function ell(w) with the following rules

1. ell((λ)) = λ
2. ell((a)) = a for every a ∈ Σ
3. ell((a(x))) = a · ell((x)) · ∗ for every a ∈ Σ and x a structural string over Σ
4. ell(((x)a)) = ∗ · ell((x)) · a for every a ∈ Σ and x a structural string over Σ

The last transformation can be easily extended over sets of structural strings.
The even linear languages can be reduced to regular ones by using control

sets as was proved in [21]. In addition, a different solution was proposed in [18]
by using the σ reduction over strings in Σ∗ that we will define as follows:

1. σ(axb) = [ab]σ(x) with a, b ∈ Σ and x ∈ Σ∗

2. σ(a) = [a] with a ∈ Σ ∪ {λ}
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It has been proved that if L is an even linear language then σ(L) is regular [18].
From the last reduction, we proposed a learning algorithm in [19] that could
learn even linear languages with k-testability based on a previous algorithm to
learn k-testable languages in the strict sense from only positive data proposed
by Garćıa et al. [4]. We will refer to that algorithm as KTSS.

In [14], we defined WKFA with local testability (in the strict sense). The basic
concept is that the finite automaton obtained from the WK finite automaton by
using the ell(·) and the σ operations defines a regular language. So, if the ob-
tained regular language is locally testable (in the strict sense) then, the molecule
language accepted by the WK finite automaton will be locally testable (in the
strict sense) in a wide sense. The class of languages accepted by k-testable (in
the strict sense) WKFA in the upper strand will be denoted by AWKKLT (SS)

u .
Finally, you can observe that the σ reduction and the structural transforma-

tion ell(·) that we have proposed before can be easily reversed in order to obtain
the initial language.

Now, we can mix up all these operations in order to learn a restricted sub-
class of WKFA which are still able of recognizing non-trivial context-sensitive
languages. The proposed algorithm is shown as Algorithm 1.

Algorithm 1. An algorithm to learn AWKKLT SS
u languages from structural

information
Input: A finite sample of linear structural duplicated strings S defined over Σ
Output: A WKFA A such that S+ ⊆ Lu(A)
Method:

1. Sell = ell(S)
2. Sσ = σ(Sell)
3. Ar=KTSS(Sσ)
4. Gell = σ−1(Ar)
5. Glin = ell−1(Gell)
6. A = AFWK(Glin) where ρ = {(a, a) : a ∈ Σ}
7. Return(A)

EndMethod.

The proposed algorithm is able to infer WKFA from positive structural infor-
mation sample only. The restrictions over the learned WKFA are the following:

1. The linear grammar associated with the WK finite automaton generates
structured strings according to S

2. The set S+ is associated to the set S. Here, S+ is defined by the strings
obtained from S by taking only the upper strand (as an application of
Corollary 1).

3. The grammar obtained by reducing the corresponding linear grammar of
the WK finite automaton to the regular one is k-testable in the strict sense.
Alternatively, we can say that the WK finite automaton is k-testable in the
strict sense as shown in [14].
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4. The operation A = AFWK(Glin) takes a linear grammar and obtains a WK
finite automaton by applying the Theorem 1.

We can easily prove that there exists context-sensitive languages which are
not context-free and that can be accepted in the upper strand by a WK finite
automaton with the previous restrictions.

Example 2. Let us take the language L = {anbncn : n ≥ 1} which can be accepted
by the WK finite automaton shown in the Example 1. A positive structural infor-
mation associated with the WK finite automaton could be the following

S = {(a(b(c((#)c)b)a)), (a(a(b(b(c(c(((#)c)c)b)b)a)a)))}
Then, by transforming the linear structures in even linear ones we obtain

Sell = {abc ∗ #cba∗, aabbcc ∗ ∗#ccbbaa ∗ ∗}
Then, by applying the σ transformation to Sell we obtain

Sσ = {[a∗][ba][cb][∗c][#], [a∗][a∗][ba][ba][cb][cb][∗c][∗c][#]}
A k-testable language in the strict sense inferred from the previous sample,

with k = 2, by applying the learning algorithm KTSS, is the following one

From the last finite automaton we can obtain an even linear grammar by
applying the σ−1 transformation. The corresponding even linear grammar is the
following

S → aA∗ A → aA∗ | bBa B → bBa | cCb
C → cCb | ∗Dc D → ∗Dc | #

From the last even linear grammar we can obtain a linear one, by applying
the homomorphism g(a) = a, g(b) = b g(c) = c, g(#) = # and g(∗) = λ. The
linear grammar obtained from g is the following one

S → aA A → aA | bBa B → bBa | cCb
C → cCb | Dc D → Dc | #

Observe that the WK finite automaton associated with the previous grammar
is the one shown in the Example 1. In addition, the complementarity relation
is obtained again from the input sample as ρ = {(a, a), (b, b), (c, c)}. So, L ∈
AWKKLT SS

u .
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The efficiency of the proposed method is shown in the following result.

Proposition 1. The proposed Algorithm 1 runs in polynomial time with the size
of the input sample S.

Proof. It can be trivially proved that the Algorithm 1 runs in polynomial time.
The structural transformation ell(·) is linear with the size of the string. The
application of the σ transformation is linear again. The application of the algo-
rithm KTSS is polynomial time [4]. All the operations used to obtain the WK
finite automaton are polynomial time given to the fact that they are the appli-
cation of the σ−1 and the ell−1(·) operations. ��

Finally, the identifiability of a non-trivial context-sensitive language class in the
limit is shown as follows

Proposition 2. AWKKLT SS
u is identifiable in the limit from only positive struc-

tural information.

Proof. The identification in the limit comes from the convergence result of the
algorithm KTSS exposed in [4]. So, if we apply the Algorithm 1, the identifiability
in the limit of the class AWKKLT SS

u is guaranteed. ��

Generalizing the Learning Scheme

In the Algorithm 1, we have used the learning algorithm for k-testable languages
in the strict sense, KTSS. Nevertheless, any learning algorithm for a given subclass
of regular languages could be fruitful in proposing new learning algorithms for
different restrictions of WKFA. So, a generalization of Algorithm 1 is proposed
as Algorithm 2 which is a learning scheme to take advantages of the previously
proposed reductions from WKFA to regular languages.

In the Algorithm 2, the method LearningRegPos refers to any learning algo-
rithm that works with only positive data and obtains a finite automaton or a rep-
resentation for a regular language. Observe that the learning algorithms referred

Algorithm 2. An algorithm to learn different families of AWKu languages from
structural information
Input: A finite sample of linear structural duplicated strings S defined over Σ
Output: A WKFA A such that S+ ⊆ Lu(A)
Method:

1. Sell = ell(S)
2. Sσ = σ(Sell)
3. Ar=LearningRegPos(Sσ )
4. Gell = σ−1(Ar)
5. Glin = ell−1(Gell)
6. A = AFWK(Glin) where ρ = {(a, a) : a ∈ Σ}
7. Return(A)

EndMethod.
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as LearningRegPos, characterize different subclasses of regular languages (i.e. k-
reversible, terminal distinguishable, function distinguishable in general, different
(positive) varieties of regular languages, etc.). Furthermore, if we change the
information protocol, and we provide positive structural information together
with negative data as input, then we can apply other learning algorithms that
work with complete data to infer regular languages.

4 Conclusions and Future Work

We have proposed an efficient method to infer a subclass of context-sensitive lan-
guages from linear structured positive strings. The method uses a computational
device that has been previously defined in the framework of DNA computing.
We think that this emerging area provides models, operations and new looks for
the proposal of new learning algorithm that would enrich the map of efficiently
learnable languages.

In this work, we have used structural positive information for the inference
of restricted WKFA which are able of recognize non-trivial context-sensitive
languages. It is an open question whether the use of different learning algorithms
for some subclasses of regular languages still holds the inclusion of non-trivial
context-sensitive languages in the upper strand or not. Actually, this issue is
under study.

Another work that we are carrying out in the present is the application of
this method to the processing of biosequences. Observe that in this framework
the use of duplication strings comes in a natural way (i.e. DNA strings) and the
availability of structural information comes from the domain task in an easy way
(i.e. location of promoters, genes, motifs, etc.).
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4. Garćıa, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict
sense. In: Proceedings of the First International Workshop on Algorithmic Learning
Theory. Japanese Society for Artificial Intelligence, pp. 325–338 (1990)

5. Laxminarayana, J.A., Sempere, J.M., Nagaraja, G.: Learning Distinguishable Lin-
ear Grammars from Positive Data. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI
2004. LNCS (LNAI), vol. 3264, pp. 279–280. Springer, Heidelberg (2004)

6. McNaughton, R., Papert, S.: Counter-free automata. MIT Press, Cambridge (1971)



186 J.M. Sempere

7. Okawa, S., Hirose, S.: The Relations among Watson-Crick Automata and Their
Relations to Context-Free Languages. IEICE Transactions on Information and Sys-
tems E89-D(10), 2591–2599 (2006)

8. Onodera, K., Yokomori, T.: Doubler and linearizer: an approach toward unified
theory for molecular computing based on DNA complementarity. Natural Com-
puting 7, 125–143 (2008)
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