
Translating Multiset Tree Automata
into P Systems�

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

jsempere@dsic.upv.es

Abstract. In this work we propose a translation scheme to obtain P
systems with membrane creation rules from transitions of multiset tree
automata (MTA).

1 Introduction

The relation between membrane structures and multiset tree automata (MTA)
has been explored in previous works. For instance, in [8] we introduced multiset
tree automata, and in [5] this model was used to calculate editing distances
between membrane structures. A method to infer multiset tree automata from
membrane observations was presented in [9], while in [10] different families of
membrane structures were characterized by using multiset tree automata.

In this work we propose a translation scheme to obtain membrane rules from
MTA transitions. The advantages of this approach are clear, so we can implement
a computer tool to automatically obtain membrane creation rules from a set of
trees that model the desired behavior of the P system structure according to [9].

2 Notation and Definitions

In the sequel we provide some concepts from formal language theory, membrane
systems and multiset processing. We suggest the books [7], [6] and [1] to the
reader.

Multisets
First, we provide some definitions from multiset theory as exposed in [11].

Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→ N is a
function. Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets, then the
substraction of multiset B from A, denoted by A�B, is the multiset C = 〈D, h〉
where for all a ∈ D h(a) = max(f(a) − g(a), 0). The sum of A and B is the
multiset C = 〈D, h〉, where for all a ∈ D h(a) = f(a) + g(a), denoted by A ⊕ B.

� Work supported by the Spanish Ministerio de Ciencia e Innovación under project
TIN2007-60769.

D. Corne et al. (Eds.): WMC9 2008, LNCS 5391, pp. 394–402, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Translating Multiset Tree Automata into P Systems 395

We say that A is empty if for all a ∈ D, f(a) = 0, and A = B if the multiset
(A � B) ⊕ (B � A) is empty.

The size of a multiset M is the number of elements that it contains and
it is denoted by |M | (observe that we take into account the multiplicities of
every element). We are specially interested in the class of multisets that we call
bounded multisets. They are multisets that hold the property that the sum of all
the elements is bounded by a constant n. Formally, we denote by Mn(D) the
set of all multisets 〈D, f〉 such that

∑
a∈D f(a) = n (observe that, in this case,

〈D, f〉 should be finite).
A concept that is quite useful to work with sets and multisets is the Parikh

mapping. Formally, a Parikh mapping can be viewed as the application Ψ :
D∗ → N

n where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define
Ψ(x) = (#d1(x), · · · , #dn(x)) where #dj (x) denotes the number of occurrences
of dj in x, 1 ≤ j ≤ n. Finally, in the following, we work with strings representing
multisets. So, the multiset represented by x is the multiset with elements that
appear in x and multiplicities according to Ψ(x).

P Systems

We introduce basic concepts from membrane systems taken from [6]. A transition
P system of degree m is a construct

Π = (V, T, C, μ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0), where:

– V is an alphabet (the objects),
– T ⊆ V (the output alphabet),
– C ⊆ V , C ∩ T = ∅ (the catalysts),
– μ is a membrane structure consisting of m membranes,
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i,
– Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the

ith region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj | a ∈ V, 1 ≤ j ≤ m}

and δ is a symbol not in V that defines the membrane dissolving action.
From now on, we denote the set tar by {here, out, ink | 1 ≤ k ≤ m},

– i0 is a number between 1 and m and it specifies the output membrane of Π
(in the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the
objects that leave the system by arranging them in the leaving order (if several
objects leave the system at the same time then permutations are allowed). The
set of numbers that represent the objects in the output membrane i0 is denoted

396 J.M. Sempere

by N(Π). Obviously, both sets L(Π) and N(Π) are defined only for halting
computations.

Many kinds of rules have been proposed in P systems for creation, division
and modification of membrane structures. There have been several works in
which these rules have been investigated or they have been employed for different
purposes.

In the following, we enumerate two kinds of rules which are able to modify
the membrane structure.

1. Division: [ha]h → [h[h1a1]h1 [h2a2]h2 · · · [hpap]hp]h. The object a in region h
is transformed into objects a1, a2, · · · , ap. Then, p new regions are created
inside h with labels h1, h2, · · · , hp, and the new objects are communicated to
the new regions. This rule is a generalization of the 2-division rule proposed
in different works.

2. Creation: a → [hb]h. A new region is created with label h and the object a
is transformed into object b which is communicated to the new region.

The power of P systems with the previous operations and other ones (e.g., ex-
ocytosis, endocytosis, etc.) has been widely studied in the membrane computing
area. Given that the previous operations can modify the membrane structure of a
P system Π during the computation, we denote by str(Π) the set of membrane
structures (trees) that eventually are reached by Π during its computation.
Observe that this definition was used in [3], in order to define tree languages
generated by Π systems. In such case, only the membrane structures obtained
after halting were considered.

In this work we introduce a new kind of rules which allow the creation of
different regions in only one step: n-creation. Formally, a n-creation rule is de-
fined as a → w0[h1w1]h1 [h2w2]h2 · · · [hnwn]hn . The meaning of this rule is that
the object a is transformed into objects w0, w1, · · · , wn. Then, n new regions are
created with (probably repeated) labels h1, h2, · · · , hn, and the new objects are
placed in the new regions. This rule is a generalization of the creation rule pro-
posed in different works; we refer to [6] for references. Observe that, under our
point of view, the use of a n-creation rule is equivalent to the use of a creation
rule together with a division rule and then a dissolving rule in order to erase the
external region.

Tree Automata and Tree Languages

Now, we introduce some concepts from tree languages and automata as exposed
in [2,4]. First, let a ranked alphabet be the association of an alphabet V together
with a finite relation r in V ×N. We denote by Vn the subset {σ ∈ V | (σ, n) ∈ r}.
We denote by maxarity(V) the maximum integer k such that Vk = ∅.

The set V T of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0
σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .

Translating Multiset Tree Automata into P Systems 397

Given the tuple l = 〈1, 2, ..., k〉 we denote the set of permutations of l by
perm(l). Let t = σ(t1, ..., tn) be a tree over V T . We denote the set of permu-
tations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , ..., tin) |
〈i1, i2, ..., in〉 ∈ perm(〈1, 2, ..., n〉)}.

Let N
∗ be the set of finite strings of natural numbers formed by using the

catenation as the composition rule and the empty word λ as the identity. Let
the prefix relation ≤ in N

∗ be defined by the condition that u ≤ v if and only if
u · w = v for some w ∈ N

∗ (u, v ∈ N
∗). A finite subset D of N

∗ is called a tree
domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabeled tree whose nodes cor-
respond to the elements of D where the hierarchy relation is the prefix order.
Thus, each tree t over V can be seen as an application t : D → V . The set D is
called the domain of the tree t, and denoted by dom(t). The elements of the tree
domain dom(t) are called positions or nodes of the tree t. We denote by t(x) the
label of a given node x in dom(t).

Definition 1. A deterministic finite tree automaton is defined by the tuple A =
(Q, V, δ, F) where Q is a finite set of states; V is a ranked alphabet with m as
the maximum integer in the relation r, Q ∩ V = ∅; F ⊆ Q is the set of final
states and δ =

⋃
i:Vi �=∅ δi is a set of transitions defined as follows:

δn : (Vn × (Q ∪ V0)n) → Q n = 1, . . . , m

δ0(a) = a ∀a ∈ V0

Given the state q ∈ Q, we define the ancestors of the state q, denoted by Ant(q),
as the set of strings

Ant(q) = {p1 · · · pn | pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q}

From now on, we refer to deterministic finite tree automata simply as tree
automata. We suggest [2,4] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
one can observe that the automaton A cannot accept any tree of depth zero.

Multiset Tree Automata and Mirrored Trees
We extend some definitions of tree automata and tree languages over multisets.
We introduce the concept of multiset tree automaton and then we characterize
the set of trees that it accepts.

398 J.M. Sempere

Given any tree automaton A = (Q, V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in such way is denoted by MΨ (δn). Al-
ternatively, we can define MΨ (δn) as MΨ (p1) ⊕ MΨ (p2) ⊕ · · · ⊕ MΨ (pn) where
∀1 ≤ i ≤ n MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ and MΨ (δn) = MΨ (δ′n) then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 2. A multiset tree automaton is defined by the tupleMA=(Q, V, δ, F),
where Q is a finite set of states, V is a ranked alphabet with maxarity(V) = n,
Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set of transitions defined as
follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi �= ∅

δi

δi : (Vi × Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ (a) ∈ M1(Q ∪ V0) ∀a ∈ V0

We can observe that every tree automaton A defines a multiset tree automaton
MA as follows

Definition 3. Let A = (Q, V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is the tuple MA = (Q, V, δ′, F) where each δ′ is defined
as follows: MΨ (r) ∈ δ′n(σ, M) if δn(σ, p1, p2, ..., pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A is
non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton carries out a bottom-up parsing where the tuples of states
and/or symbols are transformed by using the Parikh mapping Ψ to obtain the
multisets in Mn(Q ∪ V0). If the analysis is completed and δ′ returns a multiset
with at least one final state, the input tree is accepted. So, δ′ can be extended
as follows

δ′(a) = MΨ (a) for any a ∈ V0

δ′(t) = {M ∈ δ′
n(σ, M1 ⊕ · · · ⊕ Mn) | Mi ∈ δ′(ti)1 ≤ i ≤ n}

for t = σ(t1, . . . , tn) (n > 0)

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}

Translating Multiset Tree Automata into P Systems 399

Another extension which can be useful is the one related to the ancestors of
every state. So, we define AntΨ (q) = {M | MΨ (q) ∈ δn(σ, M)}.

The following two results formally relate tree automata and multiset tree
automata.

Theorem 1. (Sempere and López, [8]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) be the multiset tree automaton induced by A and t =
σ(t1, . . . , tn) ∈ V T . If δ(t) = q, then MΨ (q) ∈ δ′(t).

Corollary 1. (Sempere and López, [8]) Let A = (Q, V, δ, F) be a tree automaton
and MA = (Q, V, δ′, F) be the multiset tree automaton induced by A. If t ∈ L(A),
then t ∈ L(MA).

We introduce the concept of mirroring in tree structures as exposed in [8]. Infor-
mally speaking, two trees are related by mirroring if some permutations at the
structural level hold. We propose a definition that relates all the trees with this
mirroring property.

Definition 4. Let t and s be two trees from V T . We say that t and s are mirror
equivalent, denoted by t �	 s, if one of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists 〈s1, s2, . . . , sk〉

∈ perm(〈s1, s2, ..., sn〉) such that ∀1 ≤ i ≤ n ti �	 si

Theorem 2. (Sempere and López, [8]) Let A = (Q, V, δ, F) be a tree automaton,
t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q, V, δ′, F) be
the multiset tree automaton induced by A. If t �	 s, then δ′(t) = δ′(s).

Corollary 2. (Sempere and López, [8]) Let A = (Q, V, δ, F) be a tree automa-
ton, MA = (Q, V, δ′, F) the multiset tree automaton induced by A and t ∈ V T .
If t ∈ L(MA) then, for any s ∈ V T such that t �	 s, s ∈ L(MA).

3 From MTA Transitions to Membrane Rules

In this section, we propose a translation scheme to obtain P systems from MTA.
The relation between the input and the output of the scheme is showed at the
end of this section. In addition, we show that the obtained P system generates
membrane structures which can be represented by trees that the input MTA
accepts. First, we provide a couple of examples that give some intuition in the
scheme that we propose later.

Example 1. Consider the multiset tree automaton with transitions:

δ(σ, aa) = q1, δ(σ, a) = q2, δ(σ, aq2) = q2, δ(σ, q1q1) = q1, δ(σ, aq2q1) = q3 ∈ F .

400 J.M. Sempere

Then, the following P system is able to produce, during different computa-
tions, a set of membrane structures such that the set of trees induced by them
are the set of trees accepted by the MTA.

Π = ({a, b}, {a, b}, ∅, []q3 , b, ∅, ∅, (Rq3 , ∅), (Rq2 , ∅), (Rq1 , ∅), ∞), where
Rq3 = {b → a[q2b]q2 [q1b]q1},
Rq2 = {b → a[q2b]q2 ; b → a}, and
Rq1 = {b → aa; b → [q1b]q1 [q1b]q1}
Observe that we have made a top-down design, in which we start by analyzing

the final states (in this case q3) and then we obtain the ancestors of every state
according with δ by using membrane creation and membrane division.

In the following example the number of final states is greater than one.

Example 2. Let us take the MTA defined by the following transitions

t1 : δ(σ, aa) = q1, t2 : δ(σ, bb) = q2, t3 : δ(σ, q2q2) = q2, t4 : δ(σ, q1q1) = q1, t5 :
δ(σ, q2q1) = q3.

The following P system is associated to the previous MTA. Observe that
we have added a superscript to every membrane rule according to every MTA
transition.

Π = ({a, b, c}, {a, b, c}, ∅, []0, c, ∅, ∅, ∅, (R0, ∅), (Rq2 , ∅), (Rq1 , ∅), ∞), where
R0 = {c → aa(1); c → bb(2); c → [q2c]q2 [q2c]

(3)
q2 ; c → [q1c]q1 [q1c]

(4)
q1 ;

c → [q2c]q2 [q1c]
(5)
q1 }

Rq2 = {c → bb(2); c → [q2c]q2 [q2c]
(3)
q2 }

Rq1 = {c → aa(1); c → [q1c]q1 [q1c]
(4)
q1 }

We propose Algorithm 1 as a translation scheme from MTA to P systems. The
main step of the proposed algorithm, is step 5 which uses a transformation ℘c

over MΨ (δ). We formally define the transformation ℘c as follows: ℘c(p1 · · · pk) =
℘c(p1) · · · ℘c(pk), where

℘c(pi) =
{

pi if pi ∈ Σ0
[pic]pi if pi ∈ Q

Now, we can formally prove the correctness of the proposed algorithm through
the following result.

Proposition 1. Algorithm 1 obtains a P system Π from the input MTA A such
that str(Π) = L(A).

Proof. The key step in the proposed algorithm is step 5. Observe that the step
5, ensures that if δ(σ, p1 · · · pk) = qj then the region Rj holds a rule such that
for every state pl in the ancestors of qj , according to the transition, a new region
[ql

c]ql
is created. On the other hand, every symbol a ∈ p1 · · · pk is created in

region Rj . So, if the structure σ(p1 · · · pk) (or any mirrored one) is reduced to

Translating Multiset Tree Automata into P Systems 401

Algorithm 1. A translation scheme from MTA to P systems
Input: A MTA A = (Q,Σ, δ, F)
Output: A P system Π = (V, T, ∅, []0, c, ∅, · · · , ∅, (R0, ρ0), · · · , (Rm, ρm), i0) such that
str(Π) = L(A)
Method:

1. V = T = Σ0 ∪ {c} such that c /∈ Σ0

2. m = |Q|
3. ρi = ∅ 0 ≤ i ≤ |Q|
4. Ri = ∅ 0 ≤ i ≤ |Q|
5. For every transition in δ such that δ(σ, p1 · · · pk) = qj

If qj ∈ F
then Add to R0 the rule c → ℘c(p1 · · · pk)
Add to Rj the rule c → ℘c(p1 · · · pk)

6. Return(Π)

EndMethod.

the state qj in the MTA A, the structure ℘c(p1 · · · pk) is created in the P system
Π inside the region Rj . In addition, if qj ∈ F then all the (mirrored) trees
reduced to qj are accepted by A, so this is the reason why all these structures
are inside the skin region R0.

On the other hand, observe that the unique object which can create new
membranes is c which does not belong to Σ0. We have introduced c because
the rest of symbols are just leaves in the trees accepted by A. So, once any of
the leaves appears, it remains in the region as a an object that cannot evolve
anymore. Finally, the objects c disappear when all the leaves of the trees are
created.

Another aspect that we take under our consideration is the efficiency of the
proposed algorithm. We analyze its complexity time through the following result.

Proposition 2. Algorithm 1 runs in polynomial time with respect to the size of
the input MTA A.

Proof. Again, the main step of the proposed algorithm is step 5. Here, we make
as many operations as the number of δ transitions. For every transition, we must
evaluate the transformation ℘c which is quadratic with the size of the ancestors
of every state and the union of |Q| and Σ0. This holds a quadratic running time
for Algorithm 1.

4 Conclusions and Future Work

In this work we have proposed a full translation scheme from MTA to P sys-
tems. The proposed algorithm correctly and efficiently performs the translation
task. This scheme gives a formal proof for the relation between the structures
generated by the P system with membrane n-creation rules (or membrane cre-
ation plus membrane division) and the trees accepted by MTA. This result was
pointed out in previous works such as [5,8,9,10].

402 J.M. Sempere

Actually, we are developing a computer tool that holds the proposed transla-
tion scheme. This tool will help to analyze the membrane dynamics in P systems
by using the results proposed in [9]. Furthermore, we will be able to propose ini-
tial P systems based only in the membrane structures we want to generate which
will be enriched later with the corresponding evolution and communication rules.

On the other hand, a topic which has been investigated in previous works
is the relationship between MTA and P systems. We can study in depth some
aspects of the P systems by only observing the membrane dynamics. This study
can be achieved by characterizing different MTA classes as was proposed in [10].
We think that we must keep on this research in order to get a complex picture
of different P systems and their relations by using only MTA.

Acknowledgements. The author is grateful to the reviewers for sharp remarks
and suggestions made to this work. The author is most indebted to Mario J.
Pérez-Jiménez and Gheorghe Păun for comments on n-creation rules during the
9th Workshop on Membrane Computing at Edinburgh.

References

1. Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.
LNCS, vol. 2235. Springer, Heidelberg (2001)

2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications (1997) (October 1st, 2002),
http://www.grappa.univ-lille3.fr/tata

3. Freund, R., Oswald, M., Păun, A.: P systems generating trees. In: Mauri, G., Păun,
G., Jesús Pérez-J́ımenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS,
vol. 3365, pp. 309–319. Springer, Heidelberg (2005)

4. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3,
pp. 1–69. Springer, Heidelberg (1997)

5. López, D., Sempere, J.M.: Editing distances between membrane structures. In:
Freund, R., et al. (eds.) WMC 2005. LNCS, vol. 3850, pp. 326–341. Springer,
Heidelberg (2006)

6. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)
7. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-

delberg (1997)
8. Sempere, J.M., López, D.: Recognizing membrane structures with tree automata.

In: Gutiérrez Naranjo, M.A., et al. (eds.) Proc. 3rd Brainstorming Week on Mem-
brane Computing, Fénix Editora, Sevilla, pp. 305–316 (2005)

9. Sempere, J.M., López, D.: Identifying P rules from membrane structures with an
error-correcting approach. In: Hoogeboom, H.J., et al. (eds.) WMC 2006. LNCS,
vol. 4361, pp. 507–520. Springer, Heidelberg (2006)

10. Sempere, J.M., López, D.: Characterizing membrane structures through multiset
tree automata. In: Eleftherakis, G., et al. (eds.) WMC 2007. LNCS, vol. 4860, pp.
428–437. Springer, Heidelberg (2007)

11. Syropoulos, A.: Mathematics of multisets. In: [1], pp. 347–358

http://www.grappa.univ-lille3.fr/tata

	Introduction
	Notation and Definitions
	From MTA Transitions to Membrane Rules
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

