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Abstract. In this work we propose new view of P systems by using the
framework of Information Theory. Given a cell-like P system with com-
munication and evolution rules, we analyze the amount of information
that it holds as the result of symbol movements across the membranes.
Under this approach, we propose new definitions and results related to
the information of P systems and their entropy. In addition, we propose
a new working manner for P systems based only in the entropy evolution
during the computation time.
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1 Introduction

P systems were introduced as a computational model inspired by the information
and biochemical product processing of living cells through the use of membrane
communication. In most of the works about P systems, information is repre-
sented as multisets of symbols/objects which can interact and evolve according
to predefined rules. From the beginning, the most important component of the
system has been the kind of rules that it holds. There have been different propos-
als to define the rules of the system such as evolution rules, communication rules,
active rules to create/dissolve membrane structures, active rules with polariza-
tion, and so on and so forth [13].

Here, we pay attention to the following fact: the rules of a P system pro-
duce/consume new symbols in different regions of the system. So, they can be
considered information regulators that act over a region, which can be consid-
ered information senders and receivers in a pure communication system. Hence,
the behavior of the P system can be analyzed from the Information Theory point
of view. In this context, the main concept to be defined and applied is the con-
cept of entropy. From the definition of entropy, we can analyze any P system
through the characterization of the information at every region according to its
membrane structure and rules.

Furthermore, if we consider the P system as a metaphor of a living sys-
tem, then, by applying thermodynamic laws, the system will tend to increase
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its entropy. Hence, we can establish a new working manner of any P system
that selects the rules and its application number as a function of incrementing
the entropy. This new way of working is named entropic manner and will be
explained in more detail.

The structure of this work is as follows: First, we give the basic definitions
needed in this work and related to Information Theory, multisets and P sys-
tems. Then, we establish different entropy definitions for the structure and
ingredients of some P systems. We overview some algorithmic ways to calcu-
late the entropies of the system, and we consider probabilistic/stochastic and
non-probabilistic/non-stochastic systems. In the next section, we define P sys-
tems working in an entropic way and we overview the application of rules under
this approach. Finally, we propose some additional research topics related to this
approach and we report work in progress.

2 Basic Concepts

We will introduce basic concepts related to multisets, Information Theory and
P systems. We suggest to the reader the references [12,13] to introduce mem-
brane computing, and the books [5,15] to introduce Information Theory. We will
provide some definitions from multiset theory as exposed in [17].

Information Theory. We can suggest to the reader the books [5,15] and the
classical work by C.E. Shannon [16] in order to have a full view of Information
Theory.

An information source is defined by the tuple (S, P ), where S is an alphabet
(random variables) and P is a probability distribution over S. A cornerstone
of Information Theory is the concept of entropy which is attached to informa-
tion sources. The entropy of an information source I, with an alphabet S and
probability distribution P : S → [0, 1] is defined as

H(I) = −
∑

a∈S

P (a) · log2P (a)

Observe that we are working with trivial codes where the alphabet of an
information source is its encoding. We have fixed the base 2 for the logarithmic
functions, so the information entropy is described in bits. The change from a
binary base to a different one can be easily carried out in a logarithm base
change. In addition, we can consider the conditional and joint entropies of two
random variables X and Y , respectively H(X | Y ) and H(X,Y ), by using the
appropriate probability distributions.

Given, two probability distributions p and q over S, the relative entropy or
Kullback-Leibler distance is defined by

D(p || q) =
∑

a∈S

p(a) · log2

p(a)
q(a)
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and, for two random variables X and Y , with a joint probability distribution
p(x, y), the mutual information I(X,Y ) is defined as

I(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) · log2

p(x, y)
p(x) · p(y)

Observe that the mutual information is the relative entropy between the
joint distribution and the product distribution. The following relations between
mutual information and entropies hold

– I(X,Y ) = H(X) + H(Y ) − H(X,Y ),
– I(X,Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X).

Multisets and P Systems. Let D be a set. A multiset over D is a pair 〈D, f〉
where f : D −→ N is a function. If A = 〈D, f〉 and B = 〈D, g〉 are two multisets
then the removal of multiset B from A, denoted by A � B, is the multiset C =
〈D,h〉 where, for all a ∈ D, h(a) = max(f(a) − g(a), 0), and their sum, denoted
by A⊕B, is the multiset C = 〈D,h〉, where for all a ∈ D, h(a) = f(a)+g(a). We
will say that A = B if the multiset (A � B) ⊕ (B � A) is empty that is ∀a ∈ D,
f(a) = 0.

The size of any multiset M is the number of elements that it contains and will
be denoted by |M |. In the following, we will represent multisets by using strings
over the alphabet induced by D. Hence, for every alphabet D = {a1, a2, · · · , an}
and for every string x ∈ D∗, we will use the well known Parikh vector defined
by ΨD(x) = (|x|a1 , |x|a2 , . . . , |x|an

) where |x|ai
is the number of occurrences of

the symbol ai in x. Observe that, in this case, the length of the string is the size
of the multiset that it defines. Finally, for any multiset denoted by the string x,
alph(x) denotes the set D that defines the multiset x.

A cell-like P system of degree m with communication rules is a construct

Π = (V, μ,w1, · · · , wm, R1, · · · , Rm, i0),

where:

– V is an alphabet (the objects)
– μ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated to the

region i
– Ri, 1 ≤ i ≤ m, is a finite set of rules of the form (u, v) with u 
= λ and

v 
= λ (evolution rules), (u, out; v, in) with u 
= λ and v 
= λ (antiport rule)
and (x, out) or (x, in) with x 
= λ (symport rule). The strings u, v and x are
defined over the alphabet V , and λ denotes the empty string.

– i0 is a number between 1 and m and it specifies the output membrane of Π
(in the case that it equals to ∞ the output is read outside the system).

Observe that, in the previous definition, we have omitted an output alphabet,
a catalyst alphabet and dissolution rules. In addition, we have omitted priorities
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in the rule sets and other communication rules with explicit address. The main
reason is that we want to establish a preliminary analysis with the most simple P
systems. We have relaxed the definition of P systems by using standard symbol-
object ingredients together with antiport (symport) rules. Furthermore, we have
not fixed a working manner of the system. The main reason is that all the
definitions and results that we propose in this work are valid for any of the
working modes proposed in the literature [13].

Given a P system Π = (V, μ,w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0), a con-
figuration of Π at time t will be denoted by (μ,wt

1, w
t
2, · · · wt

m) where wt
i is the mul-

tiset of objects that region i holds at time t. Obviously, for every region i w0
i = wi

(the initial configuration). A computation is defined as a (finite) sequence of con-
figurations C0, C1, · · · , Cp where every configuration follows from the previous
one by applying the rules over the multisets in a predefined (maximal, minimal,
sequential, etc.) manner. Observe that, given that the system has no creation nor
dissolution rules, it is no necessary to include μ in the configuration.

Given that a P system is a non-deterministic computational device, it is
quite useful the use of computation trees instead of computation sequences. A
computation tree is defined by a set of nodes (configurations) with the following
conditions: First, the root is the initial configuration of the system and every
son of an internal node is defined by the application of rules over the multiset
of every region. Given that the system is non-deterministic then every son of an
internal node is defined by one possible combination of rule applications over the
configuration that it defines. Figure 1 shows a graphical view of this definition.

Fig. 1. A computation tree of a P system

An important concept to define entropies for P system is to establish whether
the objects are produced in a stochastic/probabilistic manner or not. For the
former, the probabilistic distribution is carried out by the definition of stochas-
tic/probabilistic P systems such as Dynamical Probabilistic P systems (DPP)
[14] or Population Dynamics P Systems (PDP) [4], together with their simulation
algorithms [2,10,11].
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3 The Entropy of a P System

We will define the entropy of a P system by analyzing how the multisets at every
region evolve according to the rules of the system. First, we define the entropy
of the multisets of the regions and, then, the entropy of a P system. In order to
carry out a rigorous analysis, we need to distinguish whether the P system is a
probabilistic/stochastic one or not. In the following, we discuss both cases.

The Non-probabilistic/Non-stochastic Case. We consider that every mul-
tiset at every region in the P system is defined by the application of rules in
a pure non-deterministic non-probabilistic/non-stochastic case. Hence, the mul-
tisets at every region during the computation reflect, in an isolated way, the
information production that can be considered to calculate the entropy. We will
introduce a definition of entropy that is related to every multiset without any
probabilistic information source.

Definition 1 (self-referred entropy of a multiset). Let us consider a mul-
tiset A = 〈D, f〉 represented by x. The self-referred entropy of x is defined as

Hs(x) = −
∑

a∈D

fr(a) · log2fr(a)

where fr(a) = |x|a
|x| .

Observe that, in the previous definition, the probability distribution has been
substituted by the frequency of appearance of every object at the region (fr(a)).

In the following, we analyze the evolution of self-referred entropies according
to the computations of the system.

Definition 2. Let Π be a P system of degree m and ct = (μ,wt
1, · · · , wt

m) be a
configuration of the system during a computation at time t. Then

1. The absolute entropy of Π at time t is Ht
abs(Π) =

∑
1≤i≤m Hs(wt

i)
2. The maximal entropy of Π at time t is Ht

max(Π) = max {Hs(wt
1), · · · ,

Hs(wt
m)}

3. The minimal entropy of Π at time t is Ht
min(Π) = min {Hs(wt

1), · · · ,
Hs(wt

m)}
4. The average entropy of Π at time t is Ht

avg(Π) = Ht
abs(Π)

m
5. The holistic entropy of Π at time t is Ht

hol(Π) = Hs(wt
1w

t
2 · · · wt

m)

Property 1. The following relation holds

Ht
min(Π) ≤ Ht

avg(Π) ≤ Ht
max(Π) ≤ Ht

abs(Π) ≤ Ht
hol(Π)

Proof. Trivial from the definitions.
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The question about the computation of the entropy of a P system is com-
pletely based on the calculation of the different multisets at every region, accord-
ing to the rules that affect to that region. Hence, at time t the multiset wt

i will
evolve, in the next transition, to the multiset wt

i � left(R, i)⊕right(R, i), where
left(R, i) is a multiset based on the left hand side of the rules that affect to the
region i, and right(R, i) is a multiset based on the right hand side of the rules
that affect to the region i. Hence, the way to calculate the different entropies
defined before is carried out by the following execution scheme:

1. Calculate the following configuration of the system according to its working
manner (minimal, maximal, sequential, etc.)

2. For every multiset wt+1
i calculate Hs(wt+1

i ).
3. Calculate the different entropies based on the self-referred entropies of the

system.

The Probabilistic/Stochastic Case. In this case, we assume that every rule
in the system has a kinetic (stochastic) real value that influences the appli-
cation of the rules and the way to obtain the new configurations during the
computation time. The main systems that have been proposed to calculate the
configurations in a probabilistic/stochastic manner have been Dynamical Prob-
abilistic P systems (DPP) [14], including the τ -DPP systems [3], or Population
Dynamics P Systems (PDP) [4]. In both cases, there are simulation algorithms
that manage the configurations evolution in order to produce the desired sto-
chastic/probabilistic effect [1,2,8–11].

In this case, the definition of entropy should be based on the appearance
probabilities of every symbol at every region. Here, the symbol probabilities
come from different probabilities sources according to rules at (different) regions
that produce the same symbol with different probabilities.

For example, let us consider the P system of Fig. 2. There are three regions
and the object b can be produced at region 1 by using the rule r1 at region 2 or
the rule r2 at region 3. While the rule r1 is applied at every computation step
(it has probability 1.0 to be applied), the rule r2 should compete with rule r3 to
be applied (if we suppose a uniform distribution of kinetic constants). So, the
object ‘b’ at region 1 has probability 1.0 or probability 0.5 depending on the rule
that has produced it.

We evaluate every symbol at every region by establishing where it was created
in order to reflect this situation. Then, given a P system Π, let us suppose that,
at region i, the object ‘a’ can be produced by the set of rules Ri

a, with cardinality
|Ri

a|. This set is easily deduced by the set of rules at every region adjacent to
region i. We propose a naive approximation to the probability of symbol ‘a’ at
region i, and computation time t, as follows

P t
i (a) =

∑
r∈Ri

a
Prt−1(r)

|Ri
a|

where Prt−1(r) is the probability of applying the rule r at time t − 1 that is
calculated in a stochastic/probabilistic way as referred above.
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Fig. 2. A P system with competing rules

Now, we can reformulate the entropy of any multiset that reflects the sto-
chastic/approximation approach.

Definition 3 (entropy of a multiset at time t). Let Π be a P system and
let x be a multiset at time t located at region i. The entropy of x at time t is
defined as

Ht(x) = −
∑

a∈alph(x)

|x|a · P t
i (a) · log2P

t
i (a).

If we substitute at Definition 2, the entropy Hs(wt
i) by Ht(wt

i) then we have
the corresponding entropies of the P system into a stochastic/probabilistic app-
roach. Additionally, we can calculate the entropy of the system by executing the
following scheme:

1. Calculate the following configuration of the system and the probabilities of
the rules according to a pre-defined algorithm [1,2,8–11].

2. For every multiset wt+1
i calculate Ht+1(wt+1

i ).
3. Calculate the different entropies of the system based on the entropies at time

t + 1.

Trivially, the relation of Property 1 holds for the definition of entropies under
the probabilistic/stochastic approach.

Relative Entropy and Mutual Information Between Adjacent Regions.
Wewill use themutual information in order to analyze howeverymultiset at a given
region influences the entropy variation for the multisets at its adjacent regions. Let
Π be a P system and Ri and Rj two adjacent regions according to its membrane
structure, then we propose the following relatives entropies of the random variables
W t

i and W t
j that reflects the contents of regions Ri and Rj at time t:

1. The mutual information I(W t
i ,W t

j ) reflects the information that is only
explained by observing the two regions simultaneously at every computation
step
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2. The relative entropy D(P (W t
i |W t−1

j ), P (W t
i ) · P (W t−1

j )) that measures the
causality information effects of one region over the other with respect to their
behavior as independent regions.

Observe, that we can generalize the random variables in order to consider the
set of regions adjacent to a given one. Hence, we can define the random variable
W t

i1,i2,··· ,ip
that takes into account the contents of the regions Ri1 , Ri2 , · · · , Rip

which are adjacent to the region Ri at computation time t.
In addition, we can use the computation time to study the information effects

of the contents of a given region Ri, at time t, over a non-adjacent region Rk in
computation time t + p with p > 1.

The scheme to calculate the previous information metrics is based again on
the algorithms to calculate the multisets at every region and the estimation of
conditional and joint probability distribution.

4 P Systems with Entropic Transitions

The transition modes of a P system has been classically one of the hot topics in
membrane computing [7]. In this section we are going to propose a new working
manner based on the informational aspects of the system. Furthermore, we can
redefine the confluence of P systems computation based on this working manner.
The following definition introduces this aspect.

Definition 4 (entropic confluence). Let Π = (V, μ,w1, · · · , wm,
(R1, ρ1), · · · , (Rm, ρm), i0) be a P system of degree m. We will say that Π is

1. entropic confluent if, for every pair of halting configurations
(μ,wt

1, · · · , wt
i0

, · · · , wt
m) and (μ,wq

1, · · · , wq
i0

, · · · , wq
m), Hs(wt

i0
) = Hs(w

q
i0

)
2. complete entropic confluent if, for every pair of halting configurations

(μ,wt
1, · · · , wt

m) and (μ,wq
1, · · · , wq

m), ∀i, 1 ≤ i ≤ m, Hs(wt
i) = Hs(w

q
i )

3. absolute entropic confluent if, for every pair of halting configurations
(μ,wt

1, · · · , wt
m) and (μ,wq

1, · · · , wq
m),

∑
1≤i≤m Hs(wt

i) =
∑

1≤i≤m Hs(w
q
i )

4. maximal entropic confluent if, for every pair of halting configurations
(μ,wt

1, · · · , wt
m) and (μ,wq

1, · · · , wq
m), max{Hs(wt

1), · · · ,Hs(wt
m)} =

max{Hs(w
q
1), · · · , Hs(wq

m)}
5. minimal entropic confluent if, for every pair of halting configurations

(μ,wt
1, · · · , wt

m) and (μ,wq
1, · · · , wq

m), min{Hs(wt
1), · · · ,Hs(wt

m)} =
min{Hs(w

q
1), · · · , Hs(wq

m)}
6. average entropic confluent if, for every pair of halting configurations

(μ,wt
1, · · · , wt

m) and (μ,wq
1, · · · , wq

m),
∑

1≤i≤m Hs(wt
i)

m =
∑

1≤i≤m Hs(wq
i )

m
7. holistic entropic confluent if, for every pair of halting configurations

(μ,wt
1, · · · , wt

m) and (μ,wq
1, · · · , wq

m), Hs(wt
1 · · · wt

m) = Hs(w
q
1 · · · wq

m)

Observe that some definitions of entropic confluence implies some other ones.
For example, if the system is complete entropic confluent then it is entropic
confluent and absolute entropic confluent. An absolute entropic confluent system
is average entropic confluent, and so on a so forth.
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Entropic Behavior. Inspired by thermodynamics, and as a consequence of
the second law of thermodynamics, the Principle of Maximum Entropy arises:
“Closed systems evolve to an equilibrium state characterized by a maximum of
entropy”. Hence, we can consider a different working manner for P systems based
on the growth of the entropy.

Given a P system, we say that the system applies a (maximal, absolute,
minimal, average, holistic) entropic transition if it applies only the set of rules
that increases the (defined) entropies of the system.

Observe that the set of rules that must be applied at every computation step
is based in the multisets of objects that every region contains and it can be
different at every computation step. In order to illustrate this fact, let us see
the following example: Let r1 : a → aa and r2 : ab → aabb be two rules of the
same region in a P system. If we consider the multiset aabb, then the entropic
transition will be carried out by applying rule r2 instead of r1, here we obtain
the new multiset aaaabbbb which has a maximum self-referred entropy (observe
that this maximum is achieved with a uniform distribution of objects). If the
multiset is abb then the rule to be applied in order to increase the self-referred
entropy is r1 instead of r2 and it produces the new multiset aabb (again, we
obtain an uniform distribution of objects).

Definition 5. A P system works in a (maximal, absolute, minimal, average,
holistic) entropic manner if at every computation step it only applies (maximal,
absolute, minimal, average, holistic) entropic transitions.

Observe that the simulation of a P system working in any entropic man-
ner, can be a difficult task to be simulated, given that the search of the set of
rules needed at every computation step is not a trivial task. In some cases, it
can be considered a Multiobjective Optimization Problem with conflicts, given
that different functions must be maximized (the entropies functionals at every
region), and the increase of entropy at one region could decrease the entropy
at an adjacent region (by using symport or antiport rules). Here, some entropy
optimization problems can be proved to be NP-optimization ones [6].

Another aspect that must be explored with respect to P systems working in
an entropic manner, is the halting criterion. Observe that in our proposal, if no
rule increments the entropy of the system, then no rule can be applied at a given
time and, accordingly to the usual criterion, the system halts. Obviously, under
this point of view the sets of natural numbers and languages that P systems
recognize, accept or generate should be defined within this new approach.

5 Conclusion, Further Research and Future Works

In this work we have proposed the Information Theory as a framework to study P
systems under a new view. We think that this approach opens new and exciting
topics that should be studied in the near time. Among other questions we can
point out, the following ones:
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1. How does the operational mode (i.e. maximal or minimal parallelism, sequen-
tial, etc.) affect to entropy?

2. What is the relationship between confluence and entropic confluence?
3. What is the definition of the entropy of a P system, if the external output is

defined?

With respect to the last question, if we consider any P system with a network
structure (tissue-like P systems, Spiking Neural P systems, ...) then the entropy
should be calculated by taking the output sequence as a pure communication
channel. Here, the output alphabet, the time between outputs (specially, in the
case of SN P systems) and the definition of randomness are essential aspects
that should be considered in order to explore new aspects of this approach.

All these aspects will be studied in the near future and some of them are
actually work in progress.
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