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Abstract. The experience with COVID-19 pandemic has highlighted
the importance of computational models to understand, simulate, and
control infectious disease dynamics, also to significantly support decision-
making processes for public health. Within this context, membrane com-
puting has shown to be promising for modeling complex epidemiological
systems, due to its population based inherent parallelism and compart-
mental structure.

Two models stand out for their complementary strengths among the ex-
isting works that adopt this paradigm. One, known as LOIMOS, focuses
on detailed representations of infection and symptom progression, offer-
ing a biologically rich modeling of disease stages. The other, referred to
as MVT, introduces behavioral dynamics, allowing individuals to adapt
their actions based on perceived risk, personal willingness to vaccinate,
and inter-provincial mobility preferences.

This work combines the core ideas of LOIMOS and MVT into a unified
simulation framework, referred to as TEAM (Transmission of Epidemic
Among Membranes), which integrates biological accuracy with behav-
ioral flexibility. The goal is to create a general-purpose, computationally
efficient model adaptable to various infectious diseases beyond COVID-
19. Central challenges included resolving formal and structural differ-
ences between the two source models and harmonizing their rule-based
dynamics.

Keywords: Behavioural epidemiology, distributed computing, infection diffu-
sion, massive parallelism, population dynamics.

1 Introduction

Membrane computing is a branch of natural computing inspired by the struc-
ture and function of biological cells [29,11, 10], through the metaphor of nested
membranes and chemical reactions occurring within compartments [15].

P systems (introduced by Gheorghe Paun [21,19]) offer an inherently parallel
and non-deterministic framework [20] that has attracted interest from both fields
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of theoretical computer science and systems biology [9]. Each membrane defines
a region containing multisets of objects (representing chemical substances) and
is subject to evolution rules that govern transformations, communications, and
structural operations.

Various classes of P systems have been advanced in the literature, while P
systems with active membranes are particularly expressive [18,31]. They ex-
tend the basic framework by introducing additional features such as membrane
polarization, membrane division, and dissolution, enabling dynamic structural
changes and enhanced computational power [33]. Division rules are particularly
powerful, by allowing membranes to duplicate together with their contents. This
feature enables exponential workspace growth, a critical asset in solving compu-
tationally hard problems such as the HPP and SAT [32,17].

Recent advancements in membrane computing have introduced significant
refinements to the semantics of evolution rules, enabling more expressive and
biologically realistic models. To provide finer control over the application of
rules, three key mechanisms have been proposed:

— Input Population Percentage, which specifies the proportion of objects or
membranes to which a rule is applied, enabling partial or population-level
interactions;

— Rule Priority Index, which resolves conflicts between applicable rules based
on their relative precedence, allowing deterministic selection;

— Rule Probability, which assigns a likelihood to rule execution when given
conditions are met, by introducing controlled non-determinism and reflecting
the probabilistic nature of many biological processes.

While expanding the model expressive power, these mechanisms remain consis-
tent with the foundational principles of membrane computing: parallel execution,
local interactions, and rule-based rewriting.

Numerous works have employed P systems to simulate the spread of infec-
tuous diseases, and evaluate containment strategies under various conditions.
Building upon these foundations, we here introduce the TEAM epidemiologi-
cal model, which extensively incorporates the three features above. We propose
this model with the main aim to integrate the strengths and to tune or elim-
inate the limits of two prior recent models of the literature, LOIMOS [1] and
MVT [28], into a unified framework, that enhances flexibility and expressiveness
in simulating infection diffusion processes through membrane computing.

LOIMOS is a Greek word meaning pestilence, which more figuratively re-
calls pestilent fellows. It is the name for the epidemiological model developed at
the Universitad Politecnica de Valencia, which introduces a rich biological layer
and a predictive statistical structure. It models epidemiological states in detail,
assigning individuals to a broader set of location types while tracking a finer
granularity of attributes, such as age group, viral load, symptom severity, and
immune status. Infection in LOIMOS involves thousands of rules and complex
object dynamics, where individuals generate and interact with virus, antivirus,
specialized immune elements, and further components. Disease progression is
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influenced by both viral load and immune efficiency, producing various symp-
tomatic trajectories, ranging from home isolation to hospitalization or ICU ad-
mission, each with associated recovery or mortality probabilities. LOIMOS also
models four distinct infection types based on combinations of innate or acquired
immunity and symptom intensity, reflecting more nuanced biological variabil-
ity. LOIMOS enjoys realistic features and nice system properties, and achieves
notable simulation results reported in [3, 2].

MVT is a rule-based simulator of disease spread across provinces imple-
mented in Python. The name MVT reflects the collaboration work among the
universities of Milano-Bicocca, Verona, and Trieste. In MVT, the population
is distributed among a limited set of location types—schools, workplaces, hos-
pitals, and common areas—across multiple provinces. Each individual carries
structured attributes including age, mobility data, and epidemiological status,
while infection evolves according to simplified disease phases: incubation, active
infection, and immunity. Behavioral adaptation [27] is a main feature of this ap-
proach, indeed it plays a central role, with individuals responding to local infec-
tion prevalence by altering movement patterns and risk behaviors, a mechanism
captured by newly introduced Caution Parameter. This model basically inte-
grates disease dynamics with geographic mobility, enabling exploration of how
different vaccination strategies, different social restriction rules, and different be-
havioral responses, affect outcomes in the population. Successful simulations of
this model among provinces of the Lombardy region in Italy are presented in [8,
6].

MVT and LOIMOS provide complementary insights: the former focuses on
adaptive behavior and geographic mobility, while the latter models immune re-
sponse and symptomatology in greater biological detail. These models serve as
conceptual and technical foundation for TEAM, the unified framework presented
in this paper. The name is inspired by both the concept of team membranes,
recently circulating in the membrane computing community, and the active col-
laboration between University of Milano Bicocca, Verona, and Universidad de
Valencia.

In next sections we present the source model and its simulator. Section 2
namely introduces the proposed model, detailing its rules for infection, conta-
gion, symptoms, movement, recovery, and behavior, whereas Section 3 focuses on
the simulation and validation environment, where scalability, infection general-
ization, integration of real-world data, and assessment of behavioral parameters
and quarantine strategies are reported as the results of this investigation. Sec-
tion 5 concludes the paper and outlines potential future developments.

2 Model definition

TEAM model is defined as a cell-like P system with active membranes without
polarization, formally described by the tuple:

I = (V,H, p,wy,wa, ..., Wy, R) (1)
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where:

1. V is the alphabet of objects. Each membrane contains objects, represented
with multisets to map strings of symbols onto an alphabet;

2. H is the alphabet of labels for membranes. They have a label to distinguish
them from different membranes of the same type;

3. p is the initial membrane structure, of degree m, with all membranes labeled
with elements of H. A membrane with label h is represented as [|p;

4. w; are strings over V specifying the multiset of objects initially in the i-th
regions defined by pu.

5. R is a finite set of evolution rules.

The membrane structure is tree-like: at the top is the skin membrane, which
contains all provinces. Each province includes a variety of places such as houses,
hospitals, schools, and more, each with a limited capacity. Individuals, modeled
as membranes themselves, move between these places according to rules that
reflect behavior and epidemiological state.

Each place serves a specific function: houses host families; hospitals and ICUs
treat severe infections; schools, workplaces, and leisure centers capture daily
routines; common areas model transit and crowded indoor environments. The
leisure center represents both open and closed public spaces, varying in infection
risk depending on time and use.

Embedded within places, individuals never leave the system but move through
its membrane structure via movement rules that simulate interactions in a pop-
ulation. Every membrane carries objects that define its characteristics.

Objects within membranes represent information, control behavior, and en-
able evolution through rewriting rules. Each individual contains the temporal
objects Hour; and Day; to govern daily routines.

Age is represented by tags like young, adult, or elderly, influencing movement
patterns. Viral dynamics are modeled using objects such as v; for viral load, antiv
and antivesp for immune response, and E, for symptoms, where z € {1,2,3,4}
indicates the level. Higher v; values increase infection severity, and a successful
immune response eliminates vy, triggering recovery and temporary immunity.

Each place tracks local infection levels via an object ¢ indicating the num-
ber of infected individuals present, affecting contagion probabilities. Additional
objects encode individual attributes such as ID, location, hospitalization time,
and vaccination status (denoted by the suffix V'). These objects are manipulated
through evolution rules that drive the simulation.

Rules are described in the following, according to the process they con-
trol in the whole epidemiological dynamics. Each evolution rule a ELLN (8 has
a parametrized application guided by a couple of parameters p and q. The first
parameter p € [0,1] is a probability value that models the stochastic simulation
of the systems, while the second parameter ¢ € N represents the value of a pri-
ority relation defined over the rules for the application order. We do not explicit
this parameter when we have a system with only one rule. This allows P systems
to be effectively used in probabilistic modeling of biological networks, as shown
in [7].
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Infection rules

Infection depends on location, number of infected individuals, individual status,
and contextual factors. The general form is:

Infection Probability

Z"I’Ldj’H Z"ndk’] ¢ indj,jm indk’[ (;5 (2)

— Infection Probability: base infection rate - m -(M) where 1 is a
decreasing function that models awareness of contagiousness [28].

— Base infection rate: specific to the type of membrane.

¢: Current infection count in the location.

— Infection status: H for Healthy, I for Infected, and Inc for Incubation.

When the infection rule is applied and a healthy individual becomes infected,
they are assigned five v; objects to represent the initial viral load.

Viral load rules

The following rules are some of the many defined in TEAM, selected for their
explanatory value in illustrating the management of viral load within an indi-
vidual. They are listed in order of decreasing priority:

- antinOO,UfOO M antivesp, v1_tno, antivlgg,v%gg, sin
The individual’s antibodies (antiv) fight the disease (v1), and a new special-
ized antibody (antivesp) is created. The probabilities for applying this rule
depend on the individual’s state of health.

tQOO

. 1,3 . . .
— antivesp, vy — antivesp, v1_1no, sint
Each antivesp fights the infection with a certain probability, generating
harmless viruses, while non-specialized antibodies have a lower probability.
— antiv, vy 00013, antiv, vi_itno, sint
Each non-specialized antibody (antiv) fights against the infection with a

lower probability.

0.035,2 .
- v — V1,01, 8int

Viruses not occupied by the other rules are free to grow.

— v i> V1, sint
Symptoms (sint) increase according to the viral load present, even if the vy
elements follow no specific rule. In this way, each of the evolution rules gener-
ates a certain amount of sint, useful for managing the symptoms, depending
on how many v are involved in the left-hand side of the rule.

Symptoms rules
Each individual has a symptom status object E,, with z € {1,2,3,4}:

— E;: the host has no symptoms, and may be or may not be infected
— Es: the host has mild symptoms, may be or may not realize he is infected
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— Ej3: the host has severe symptoms and needs hospitalization
— E4: the host has critical symptoms and needs ICU

The following rules manage system variables related to symptoms, which are
closely linked to changes in viral load.

— sint™, flag 12, cont, flag
When there are 700 sint objects, this rule takes the flag object and generates
the high viral load state represented by cont.

_ Ei, cont Symptoms Probability,3 EZ‘+1
Transition to a more severe symptom stage (E;;+1) due to sustained high
viral load. The probabilities for the growth of symptoms reflect real-world
worsening rates and are respectively 1, 0.0015, and 0.001 for transitions
in the states Es, E3, and E4. These values were initially derived from the
LOIMOS model [1], and underwent a balancing phase after the integration
and uniﬁ(ljaztion with MVT.

— E;,cont == E;, cont
If the cont object is present and the host does not worsen, the current state
is mla}ntained.

- E, — E;
If there is no cont object, the viral load is not dangerous, so the host is cured
and the symptoms disappear.

— sint 25 )\
The object sint is used to know how many objects vy there were in a previous
step. If they are not used, then are deleted.

Infected individuals with medium or high-level symptoms (Es or E4) can, every
hour, trigger a dissolving rule that results in death.

— Probability of death for seriously ill patient (Eg): 1.6 - 1075 /h.
— Probability of death for critical patient (E4) in ICU: 10=%/h.
— Probability of death for critical patient (E;) outside the ICU: 2104 /h.

Movement rules

Movements simulate daily routines or inter-provincial transfers. All movement
is handled by membrane mobility rules.

Movement Probability

[[indpv,,,pv, Hour; 1 Day,|calpv,

(3)

[[indpv,,, pv, Hour; Day,| par] Py,

— indpy, pv,: an individual traveling from province z to province y.

— Hour; and Day;: respectively the ¢-th hour of the day and the [-th day of the
week.

— PM and CA: respectively, a generic Place Membrane, and the Common Area
of the destination province
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— Movement Probability: this value depends on the epidemiological situation
in the destination province. In any case, it will be 0 if the movement between
regions is not in the routine set up for that individual at time ¢ on day [.

Other movement rules handle transitions within the same province, such as
commuting between places (e.g., house and workplace), but follow the same
idea as the one shown. These movement rules bring the model to life, allowing
individuals to follow their own routines.

Recovering rules

Having described how an individual becomes infected, how the disease evolves,
and how symptoms develop, we now present how recovery occurs. In all cases,
a recovered individual gains immunity for 180 days. There are three ways to
recover:

— Recovery through hospitalization: infected individuals with severe symptoms
(E5 or Ey) have a probability of 0.03 (for hospital) or 0.05 (for ICU) per
hour of being admitted to a suitable facility, if available in the region. If
already hospitalized and symptoms worsen to critical (Ej), the individual
is moved directly to ICU. ICU availability is limited, so simulations must
be correctly parameterized. Once admitted, a 7-day recovery cycle begins.
The same cycle applies to ICU transfers, as hospitalization days are shared
across facilities.

— Recovery through specialized antivirus: if the individual accumulates enough
antivesp objects, they are considered cured. The production rate and healing
threshold of antivesp are critical parameters that have undergone a tuning
phase.

— Recovery by zeroing the viral load: even without hospitalization or a full
antibody response, if antivesp and antiv objects reduce the viral load to
zero, the individual recovers.

Behavior

To enhance realism, TEAM includes individual behaviors that influence epidemic
dynamics, inspired by MVT. These behaviors add heterogeneity and decision-
making capacity to individuals, preventing uniform reactions across the popu-
lation and improving the realism of the simulation [27]. Four main behavioral
features are implemented:

— Prudence Parameter: models individual awareness of symptoms. People may
choose to stay home when mildly symptomatic (Es), depending on their pru-
dence level. A higher Prudence Parameter reduces the probability of going
out while infected, simulating varying civic responsibility and risk percep-
tion. A detail of this parameter is described in the related section.
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— Likelihood to Change Province: individuals avoid traveling to provinces with
high infection rates. The probability of inter-provincial movement decreases
with the proportion of infected people in the destination area, discouraging
mobility toward high-risk zones. The number of individuals not predisposed
to change provinces in their routine is a fixed parameter called Same Province
Percentage, which can be set during simulation creation.

— Caution Factor: as infections rise, people become more cautious. This is
modeled through a decreasing function that reduces contagion probability
as the infection rate increases.

— Vaccination Will: the willingness to get vaccinated increases with perceived
risk, based on infection prevalence. Individuals are vaccinated based on a
probability modulated by a behavioral function. Each vaccinated person re-
ceives a randomly assigned vaccine efficacy and a corresponding protection
duration.

3 Scenario and simulations

TEAM was developed using an Object-Oriented Programming (OOP) ap-
proach, enabling a clear and efficient translation of the membrane computing
paradigm into code. This choice was favored over the use of existing frameworks
tailored to membrane computing—such as LOIMOS or P-Lingua [22]—due to
the superior flexibility, performance, and compatibility of OOP with the starting
MVT model.

To highlight the performance improvement achieved by adopting OOP, sim-
ulation times were compared: LOIMOS requires more than 200 seconds to simu-
late a single day, whereas TEAM, under the same population size and hardware
conditions, completes the same task in less than 10 seconds.

In TEAM simulator, individuals are modeled as objects with attributes rep-
resenting their health status. The rewriting rules of membrane computing are
implemented as methods, and a strict constraint is applied: no attribute can
change more than once per simulation step, in accordance with membrane com-
puting semantics. Rule application respects both priority and probability, and
membrane hierarchy ensures organizational consistency (e.g., provinces contain
places, which contain individuals).

Python was used as the programming language due to its simplicity, data
handling capabilities, and support for OOP. The simulation progresses in discrete
time steps, each representing one hour. At each step, every object can apply one
rule, and a new configuration is generated. The system halts when a predefined
number of steps (entered as input, in days) is reached.

To broaden the simulator usability, a key development was the creation of
a Graphical User Interface (GUI) using Python Tkinter library. The primary
goal of the GUI is to make the sophisticated model accessible to researchers and
officials who are not programming experts, such as those in epidemiology or pub-
lic health. The interface organizes the numerous simulation parameters—from
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population and behavioral factors to quarantine rules—into a clear, tabbed lay-
out. To further aid usability, it incorporates informative tooltips that explain
the function of each parameter. Upon completing a run, the GUI presents the
results, including key data and plots, directly within an integrated output panel,
facilitating immediate analysis. This feature removes the barrier of direct code
manipulation and establishes the simulator as a practical tool for rapid and
flexible scenario testing. The complete source code for the TEAM simulator is
publicly available [24].

Scalability of the scenario

A fundamental aspect of this work is the generalization of the model in terms of
both structure and application. The initial simulators were tailored specifically to
COVID-19 and did not have an easily editable scenario. For example, LOIMOS
required pre-defined input files for membranes, making structural changes cum-
bersome, while MVT used a fixed number of regions, limiting flexibility.

TEAM introduces a dynamic system that allocates place membranes based
on realistic capacity assumptions. These capacities are now decoupled from hard-
coded values and instead reflect typical structural limits observed in real-world
contexts. This change ensures a more coherent relationship between population
size and the number of available facilities.

Particular attention was given to the modeling of healthcare structures, where
capacity constraints are critical for simulating scenarios such as hospital satu-
ration. The new approach enables the simulator to recreate more realistic and
flexible settings, allowing for the study of how healthcare overload negatively
influences the progression of the disease.

Scalability was also enhanced by introducing parameters to control the num-
ber of provinces and the mobility behavior of individuals. A new parameter,
called Same Province Percentage S PP, allows control over the proportion of in-
dividuals whose destination province matches their origin. For instance, setting
SPP to 80% models low inter-province mobility, useful for rural or disconnected
regions, while a lower SPP simulates high urban mobility, such as between
neighborhoods in a city. This parameter, combined with the ability to vary the
number of individuals and provinces, results in a highly adaptable simulation
environment suitable for diverse scenarios.

Generalization of infections

Another major generalization concerns the type of infection being modeled.
While this work focuses on COVID-19, the simulator is designed to be adapt-
able to other infectious diseases. The two base models used diverged significantly
in infection dynamics: LOIMOS employed a viral load model with high granu-
larity, while MVT used a simplified fixed-day cycle (Incubation — Infected —
Recovered).
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To accommodate various infection types, TEAM includes support for both
approaches. This flexibility is crucial when modeling novel diseases where de-
tailed clinical parameters may not yet be available.

Additional modularity is provided by enabling or disabling components such
as ICUs. While critical for COVID-19 simulations, ICUs may be irrelevant for
diseases with low hospitalization rates. The simulator can also incorporate dy-
namic quarantine policies. By setting parameters for start time and duration,
scenarios involving time-specific lockdowns can be tested to determine optimal
containment strategies.

Another important element is the Prudence Parameter (PP), which allows
the simulation to reflect varying levels of public awareness and responsiveness.
For a well-known disease with visible symptoms and public warnings, a high PP
simulates a population acting prudently. Conversely, for a new disease with am-
biguous or mild symptoms, a low PP represents delayed recognition and high un-
intentional transmission, capturing important epidemiological dynamics. In such
scenarios, individuals may become unwitting vectors, mistaking mild symptoms
for unrelated or negligible conditions, and continue interacting socially, thereby
facilitating the spread of the disease [16]. These features collectively make TEAM
highly generalizable and applicable to a wide range of infectious disease models
beyond COVID-19.

Database

Model calibration and result validation constitute a key part of this work. While
many simulation parameters were derived from existing models, their integra-
tion into a unified framework initially produced results with unrealistically high
numbers of infections and deaths. This discrepancy became evident when com-
paring simulation outputs with empirical data from the Lombardy region, which
had not been previously used as a validation benchmark.

In particular, LOIMOS produces a combined infection peak of roughly 46%
(summing across the four infection types), which is far higher than observed in
reality. By contrast, MVT yields prevalence peaks between 8% and 20%, de-
pending on the value of the caution factor, and therefore provides more realistic
outcomes. The integration of the two approaches required careful parameter
adjustment to maintain internal consistency.

Parameter tuning focused on epidemiological factors such as transmission
probability, viral progression, and mortality rates conditional on individual health
and symptom profiles. These parameters were refined to align model outputs
with real-world observations. To ground the validation process, we used the
publicly available dataset for the Lombardy region [13], covering the period
from February 2020 onward. Lombardy, one of the Italian regions most severely
affected during the early phase of the COVID-19 pandemic [25], offers detailed
and high-quality data, which have been used extensively in previous studies [5,
26, 14]. The model was calibrated primarily against two critical indicators: the
number of infected individuals and the number of deaths.
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The primary calibration of our model was performed against data from the
Lombardy region. However, to ensure the model principles were not narrowly tai-
lored to a single dataset, we conducted a secondary validation using the distinct
demographic and epidemiological landscape of Veneto. Using data from Italy’s
Civil Protection Department, we re-scaled the simulation for Veneto’s smaller
population. This meant modeling a population of 12,000 individuals across the
region’s 7 provinces, maintaining the proportional representation used in the
Lombardy setup. This test confirmed the model’s robustness. In a 365-day run,
the simulation once again successfully captured the primary infection peak and
mirrored the overall trend of cumulative deaths, providing strong evidence that
our framework is adaptable and can generalize to different regional contexts.

Pseudocode. The entire simulator code can be viewed in [24], and Algorithm 2
describes the pseudocode, structured into two main functions:

— create_scenario(): Initializes the environment by generating provinces,
places, and individuals with the correct demographic distribution. Initial
infections are also introduced.

— run_simulation(days, hours per day): Governs the epidemic progression,
handling mobility, infections, health status updates, hospitalizations, and
data recording.

4 Validation of the model

Here we evaluate the effect of the newly introduced Prudence Parameter (PP),
with 0 < PP < 1, which controls the probability that symptomatic individu-
als choose to self-isolate rather than follow their daily routines. The parameter
modulates individual behavior in a simple yet effective way: when individuals
experience mild symptoms (Ez), the probability of leaving the house is reduced
by a factor of (1 — PP)2. Thus, a higher PP reflects a more cautious population.
For instance, if PP = 0.3, individuals are about 50% less likely to go out while
symptomatic compared to their asymptomatic behavior.

At the extremes, PP = 0 corresponds to a population entirely unaware of or
indifferent to the disease, resulting in no behavioral change. In contrast, PP =1
models complete prudence, where symptomatic individuals never leave the house,
mimicking the original LOIMOS behavior in which infected individuals are fully
isolated upon symptom onset.

This parameter can also be interpreted from a sociological perspective. It
offers a way to simulate varying levels of civic awareness and compliance with
public health guidelines. Even in contexts where information about the disease
is widely available, populations may exhibit limited adherence to testing and
isolation directives, especially if institutional trust or civic engagement is low
[12]. Such behavior has been documented in the Italian situation, as described
in [4,30]. As a result, simulations may justifiably adopt medium or low values
of PP, even under well-informed conditions.
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Algorithm 2 Pseudocode of the TEAM simulator

Input: Simulation parameters, days, population
Output: Epidemic evolution data, seconds

. function CREATE_SCENARIO

for all province in provinces do
Create province membrane instance
Calculate the correct number of place membranes
Generate place membranes
Create individuals with the correct age distribution
Assign individuals to houses
Introduce initial infections

end for

10: end function

11: function RUN_SIMULATION(days, hours per day)
12: Create CSV file
13: for all day in days do

14: for all hour in hours per day do

15: if not a quarantine day and is the correct hour then
16: Move individuals between provinces through common areas
17: Move workers to workplaces

18: Move students to schools

19: Move elderly to leisure centers

20: Simulate infections in all places with individuals
21: Move individuals back home

22: end if

23: Trigger infection and vaccination progress

24: Check for deaths

25: Discharge recovered individuals from hospitals

26: Check for hospitalization based on hospital capacity
27: Track infections and update the scenario

28: end for

29: Reduce recovery days in hospitalized individuals

30: end for

31: Write data to CSV file and create charts

32: end function

The impact of PP is illustrated in Fig. 1, which shows the prevalence and
deaths under varying values. Simulations with PP = 0 were excluded, as they
represent implausible scenarios in which no individual, regardless of age or symp-
tom severity, modifies their behavior when symptomatic.

Prevalence Over Days (%) at varying PP Deaths Over Days (%) at varying PP
50 —  PP=025 0.40{ — PP =0.25
PP =05 035 PP=0.5
2 — PP=0.75 ] — pp=0.75
— PP=0.9 030, — PP=0.9

PP =1 PP=1
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Fig. 1. Validation against PP. Prevalence (on the left side) and deaths (on the right
side) values variation in time, according to different values of the parameter PP.
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Results demonstrate that PP has a pronounced influence on epidemic dy-
namics. Lower values lead to unrealistically high peaks in both prevalence and
mortality, deviating significantly from real-world data such as that observed in
Lombardy and Veneto. In particular, PP values below 0.75 yield outcomes that
are inconsistent with known epidemiological patterns, suggesting that models
using such parameters may not reflect realistic human behavior during an out-
break.

For this reason, the default value used throughout the rest of the study
is PP = 0.9, consistent with assumptions made in LOIMOS, which implicitly
modeled behavior close to PP = 1. It is worth noting that symptom onset does
not occur immediately after infection; thus, even high PP values do not eliminate
the risk of transmission from individuals unaware of their infectious status.

Note that this current formulation of the parameter PP should be regarded
as a high-level simplification. In practice, prudence is not a homogeneous trait,
but rather is shaped by a variety of factors, including socioeconomic background,
literacy rates, and cultural contexts. PP therefore acts as an umbrella variable
that condenses many heterogeneous influences into a single dimension.

Nonetheless, the experiments underscore the importance of behavioral re-
sponse in epidemic containment. They also suggest that promoting voluntary
self-isolation in response to symptoms can significantly mitigate disease spread
and reduce mortality.

At this point, we present a comparative analysis of three simulations in which
the only varying factor is the quarantine scheduling, while all other parameters,
including PP = 0.9, remain unchanged. The goal is to evaluate how different
quarantine patterns affect the disease progression.

Quarantines are among the most effective measures available to contain epi-
demics. While they do not offer a definitive solution, they can substantially
reduce transmission, ease hospital burden, and buy time for medical response.
However, prolonged lockdowns are costly from both economic and psychological
standpoints. For this reason, it is crucial to apply them as efficiently as possible,
maximizing impact with minimal duration.

Fig. 2 shows three simulations. The first includes no quarantine and serves
as the baseline. In the second simulation, a 60-day quarantine starts on day 50,
aligned with the rising edge of the infection peak. This leads to a significant drop
in active cases, which climb again after restrictions are lifted but remain well
below the values observed without intervention. This confirms that a well-timed
quarantine can mitigate the epidemic’s peak and delay its resurgence.

The third simulation introduces a split quarantine strategy: three 20-day
lockdowns alternated with 20-day reopening intervals. Although the total quar-
antine duration remains 60 days, the effect differs markedly. After the first lock-
down, the decline in infections slows, but the second period causes a further
sharp drop. By the end of the third, the number of infected falls below the ini-
tial level. This configuration delays the return to pre-quarantine levels by over
a year, suggesting extended protection despite the same social cost.
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Fig. 2. Validation against targeted quarantines. Prevalence (on the left side) and
deaths (on the right side) values variation in time, according to different quarantine
periods (dotted lines).

These results support the strategic use of intermittent lockdowns as a cost-
effective tool to manage disease progression and reduce fatalities, particularly
when long-term eradication is not immediately feasible.

5 Conclusions

This work investigated the application of P systems to the simulation of
infectious disease dynamics. The main objective achieved was the combination
of two key aspects, behavioral management and infection diffusion complexity,
into a single coherent framework.

A major strength of P systems lies in their natural support for parallel com-
putation, which facilitates efficient large-scale simulations while preserving mod-
ularity and adaptability. In this work, several features were implemented to gen-
eralize the model to various epidemiological scenarios. Among these are the dy-
namic configuration of provinces and place membranes, the Same Province Per-
centage (S PP) parameter, controlling mobility patterns, and parameters such as
the Prudence Parameter (PP) for behavioral responses, and optional inclusion
of ICUs, and viral-load-based infection dynamics.

These features allow TEAM to reproduce complex disease dynamics, includ-
ing the effects of individual awareness, government interventions such as quar-
antines, and structural healthcare components. A graphical interface was also
developed to ensure usability and support further experimentation.

Simulations were conducted under a range of settings: 25,000 individuals,
12 provinces, 365-day duration, demonstrating the model’s robustness across
scenarios. Behavioral elements and quarantine enforcement were tested, and re-
sults were confirmed about 4) the relevance of parameters like PP to shape the
observed dynamics, and i) the cruciality of confinement intervention to signif-
icantly impact infection spread. The above validates the model’s potential as a
decision-support tool. Regional data, particularly from Lombardy and Veneto,
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were employed in two different tranches of validation [8, 23], confirming the sys-
tem’s ability to reflect realistic epidemic curves.

To further enhance the model’s realism and adaptability, several research di-
rections are envisaged. Parameters related to prudence, infection dynamics, daily
schedules, and mobility across place membranes were calibrated specifically for
some regions of the Italian context, as mentioned. It has been our starting point,
given the availability of detailed datasets. A natural next step will be to test the
simulator on other countries and contexts, to increase its generalization and
confirm that the included variables can capture diverse population behaviors.

Another important direction concerns the integration of demographic fac-
tors such as births and non-disease-related deaths, which would allow for more
realistic long-term simulations, accounting for population turnover. Improve-
ments of computational performance could also be achieved by parallelizing the
simulation, enabling faster execution, especially in large-scale or long-duration
scenarios.

Regarding the Prudence Parameter, while its current formulation as a high-
level simplification is effective for modeling purposes, a deeper behavioral and
sociological refinement could substantially increase the realism of the simulations
without additional computational complexity. A promising direction for future
work is the development of a lightweight database that collects country-specific
indicators and suggests plausible values—or ranges—for PP and similar behav-
ioral parameters. Such an extension would enhance the model ability to represent
diverse populations and improve its applicability across different epidemiological
and cultural contexts.

Incorporating seasonal variations, such as changes in behavior during holi-
days or colder months, would improve the accuracy of infection and mobility pat-
terns. Further differentiation of household structures, for instance by modeling
single-person homes or student residences, could refine transmission dynamics
within domestic environments.

The expansion of place membranes, including specific environments like uni-
versities or transport hubs, would support more granular simulations. Addition-
ally, simulating travel restrictions between provinces may offer insights into the
effectiveness of regional containment strategies.

Finally, applying optimization techniques or machine learning could support
parameter tuning and predictive accuracy, while testing the model against data
from different infectious diseases would assess its generality, flexibility, and ro-
bustness.

In conclusion, TEAM combines computational efficiency, epidemiological depth,
and behavioral flexibility, providing a strong foundation for further research in
disease modeling and public health management strategy.
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