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Abstract. Computing by plasmids is based on mobile genetic elements
such as circular DNA biomolecules that can be transferred from one cell
to the other, for example through bacterial conjugation. Recently, they
have been proposed as a variant of membrane computing where plasmids
are membranes that only contains rules and no object inside. In this work
we propose different schemes of P systems to compute recursive functions
defined by basic ones, and some functional operatos such as substitution,
primitive recursion and unbounded minimization.
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Introduction

Membrane computing was proposed at the end of the last century by Gh. Păun
[4]. It is a computational model inspired by the living eukariotic cell where the
information is encoded through objects (inspired by biomolecules) that can be
modified by applying rules (inspired by biochemical reactions). Furthermore, the
physical structure of the organelles within the living cell marks out differentiated
workspaces separated by membranes in which objects can be sent and received,
inspired by the actual transport of materials inside and outside the cell. This
highly parallel, non-deterministic and distributed model is able to efficiently
solve complex problems of very diverse nature. The models to achieve membrane
computing are named P systems.

Computing by plasmids is based on mobile genetic elements such as circular
DNA biomolecules that can be transferred from one cell to the other, for example
through bacterial conjugation [3]. Recently, they have been proposed as a variant
of membrane computing where plasmids are membranes that only contain rules
and no object is inside [8]. They have also been used in a recent work to simulate
general and 2D P colonies [9].

In this work, we propose different schemes of P systems to calculate partial
recursive functions defined by some basic functions, and some functional opera-
tors such as substitution, primitive recursion and unbounded minimization.
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Basic concepts

In the following, we introduce basic concepts of computable functions from [1],
and membrane computing and P systems from [7]. We assume that the reader
is familiar with the basics of language theory and multisets.

Partial recursive functions

We introduce computable functions defined in the framework of general recursive
functions. We refer to [1] for further details. All the functions are defined over
natural numbers. Hence, any function f is defined such as f : Nk → N.

We define the set of effectively computable functions by introducing the set
of partial recursive functions. We define them through an inductive process.

First, we define a set of basic functions:

– The zero function: z(n) = 0
– The successor function: succ(n) = n+ 1
– The projection functions: fki (n1, · · · , ni, · · ·nk) = ni for 1 ≤ i ≤ k

All the basic functions are primitive recursive functions. Now, we can intro-
duce two operators over functions as follows:

– Substitution
Let f : Nl → N and gi : Nk → N for 1 ≤ i ≤ l be primitive recursive
functions. Then, the function h : Nk → N defined as

h(n1, · · · , nk) = f(g1(n1, · · · , nk), · · · , gl(n1, · · · , nk))

is also a primitive recursive function.
– Primitive recursion

Let f : Nk+2 → N and g : Nk → N be primitive recursive functions. Then,
the function h : Nk+1 → N defined as

h(0, n1, · · · , nk) = g(n1, · · · , nk)

h(n+ 1, n1, · · · , nk) = f(n, h(n, n1, · · · , nk), n1, · · · , nk)
is also a primitive recursive function.

The family of primitive recursive functions is defined inductively as the set
of basic functions, and all the functions that can be defined by a finite number
of applications of substitution and primitive recursion operators over primitive
recursive functions.

The set of computable functions is not covered by the set of primitive recur-
sive functions. For example, Ackermann function, defined as

A(m, 0) = m+ 1
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A(0, n+ 1) = A(1, n)

A(m+ 1, n+ 1) = A(A(m,n+ 1), n)

is not primitive recursive.
In order to have a complete definition for effectively computable functions,

we must introduce a new operator to define the partial recursive functions. So,
we introduce the minimization operator µ̂ defined as follows.

– µ̂ minimization (unbounded minimization)
Let g : Nk+1 → N be a function. Then we can define the function f : Nk → N
as follows

f(n1, · · · , nk) = µ̂m[g(m,n1, · · · , nk)]
where µ̂m[g(m,n1, · · · , nk)] = m0 ⇔ g(m0, n1, · · · , nk) = 0 and ∀m < m0

g(m,n1, · · · , nk) ̸= 0

The family of partial recursive functions is defined inductively as the set
of basic functions, together with all the functions that can be defined by a
finite number of applications of substitution, primitive recursion and unbounded
minimization over partial recursive functions. The set of recursive functions is
the set of total functions that are partial recursive.

In the following, we will work with the set of partial recursive functions.

P systems

Definition 1. A cell-like transition P system of degree m is a construct

Π = (V, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

– V is the alphabet of objects;
– µ is a membrane structure consisting of m membranes labeled in a one-to-

one manner with the natural numbers {1, ..,m}. The outermost membrane
is called the skin membrane;

– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated to the
region i of µ;

– Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associated with the
regions of µ; the evolution rules are in one of the forms u → v or u → vδ,
where u is a multiset over V and v is a string from (V × {here, out, ink :
1 ≤ k ≤ m})∗ that denotes a multiset with target addressings.
In the rest of the work, we will omit the addressing ′here′, so that the symbol
a in the right-hand side of any rule will denote ahere;
The δ symbol is used to define dissolution rules where the membrane at region
i disappears after the application of the rule. In such a case, all the rules of
Ri dissapear. Observe that the dissolution rules cannot be applied in the skin
membrane.
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– ρi, 1 ≤ i ≤ m, is a partial order in the rules of Ri that denotes the priorities
between the rules

– i0 ∈ {1, ...,m} ∪ {∞} specifies the output membrane of Π (in the case that
it equals to ∞, the output is read outside the system).

A configuration of the system consists of the membrane structure and the
multisets of objects at every region. The change of a configuration of the system
is obtained by applying the rules at every region, for example in a maximally
parallel manner [2]. That is, the maximum number of rules that can be applied
(with or without repetition) are applied at each computation step. The system
halts when no rule can be applied in any of the region. A computation of the
system is a finite sequence of configurations that starts from the initial configu-
ration. The result of a computation can be considered as the number of objects
in the output region whenever the system halts.

It is a well known result that transition P systems are universal and complete
models of computation (given that they are equivalent to Turing machines and
register machines). Furthermore, the P systems solve efficiently problems that are
catalogued as difficult or intractable problems in the computational complexity
theory [7] (they solve NP-complete problems in polynomial time).

Computing by plasmids

In this section, we introduce plasmids as mobile agents that change the behavior
of local regions of P systems. In the context of P systems, we consider that
plasmids are membranes that only contain rules (there are no objects inside
them). They can move throughout the space of regions of the P system by
using predefined rules. Whenever a plasmid enters into a region, all its rules are
inherited by such a region and its rules compete for the objects at the same
level as the rest of the rules that were defined in that region. In addition, there
are rules that can move the plasmids by using communication rules as in the
classical transition P systems.

In the following, we provide a formal definition of P systems with plasmids.

Definition 2. A cell-like transition P system of degree m with q plasmids and
input is a construct

Π = (V,H, µ,w1, · · · , wm, Ro, Rp, ρ, z1, · · · , zm, zE , p1, · · · , pq, ii, i0),
where:

– V is the alphabet of objects;
– H is the alphabet of membrane labels;
– µ is a membrane structure;
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated to the

region i of µ;
– Ro is a finite set of rules for objects and membranes, defined in the same

way as the sets Ri in Definition 1. Observe that every rule can be referred
to a different region by labeling its corresponding membrane;
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– Rp is a finite set of rules for plasmid mobility, plasmid replication, and plas-
mid dissolution of the following types
1. in-symport movement

piu[ ]k → v[ pi ]k where pi is a plasmid with 1 ≤ i ≤ q, and u, v ∈ V ∗

2. out-symport movement
[piu]k → pi[v]k where pi is a plasmid with 1 ≤ i ≤ q, and u, v ∈ V ∗

3. antiport movement
piu[pjv]k → pjw[pix]k where pi, pj are plasmids with 1 ≤ i, j ≤ q, and
u, v, w, x ∈ V ∗

4. replication
[piu]k → [pipiv]k where pi is a plasmid with 1 ≤ i ≤ q, and u, v ∈ V ∗

5. dissolution
[piu]k → [v]k where pi is a plasmid 1 ≤ i ≤ q, and u, v ∈ V ∗

– ρ is a partial order over the rules from Ro and Rp that denotes the priorities;
– z1, z2, ..., zm are the initial multiset of plasmids at every region in µ;
– zE is the initial multiset of plasmids in the environment;
– p1, p2, · · · , pq are plasmids, where every plasmid is defined by a pair (Rpi

, ρpi
)

such that Rpi
is a finite set of evolution rules of the form u → v where

u ∈ V +, and v ∈ (V × {here, out, ink : 1 ≤ k ≤ m})∗, and ρpi is a partial
order over the rules in Rpi that denotes the priorities

– ii ∈ {1, ...,m} is the input membrane of Π
– i0 ∈ {1, ...,m}∪{∞} is the output membrane of Π (in the case that it equals

to ∞, the output is read outside the system)

We make some remarks to the previous definition:

1. when a dissolution rule is applied within a region, it causes all plasmids
within that region to disappear (they are not moved to the upper region)

2. plasmid rules affect only to objects (they do not affect to other plasmids or
membranes).

3. plasmid replication rules are applied in a minimal parallel manner: the rules
are applied only to one plasmid regardless of how many copies of that plasmid
there are in the region. Therefore, they only produce one copy of every
plasmid at every computational step.

The system configuration takes into account not only the objects in each
region but also the plasmids that it contains. The change of a configuration is
carried out similarly to that in a cell-like transition P system without plasmids.
However, when applying rules to objects, the rules of the plasmids compete for
objects at the same level as the rest of the rules. The system halts when no rule
can be applied within the system, including plasmid mobility rules and the rules
contained within each plasmid. The result of the computation can be considered
the number of objects found in the output region when the system halts. Note
that, in this sense, plasmids are not objects.

In Fig. 1, we show a scheme of a P system with plasmids. Observe that red
circles are plasmids and they are membranes that contain only rules and do not
contain objects.
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Fig. 1. A scheme of a P system with plasmids

The family of P systems of degree m with q plasmids is denoted by Pplqm.
It has been shown in [8] that for every set A in NRE (that denotes the sets of
numbers that can be computed) there exist positive integers m, q > 0 such that
A can be calculated by a P system in Pplqm. Hence, P systems with plasmids are
complete models of computation.

Computing partial functions by plasmids

In the following, we work with partial recursive functions, as previously defined.
The natural number k will be encoded as the multiset ak. For any function with
p arguments n1, n2, · · · , np, we will use a multiset support within the alphabet
{a1, a2, · · · , ap}, and we will encode it as the multiset an1

1 an2
2 · · · a

np
p .

For any function f such that f(n1, n2, · · · , np) = k, a P systemΠ computes f
if when given the function arguments encoded in the input membrane, the system
makes the appropriate transitions so that when it halts, the output membrane
has the function value correctly encoded as ak. If the output membrane is the
environment, then the system has sent out a number of predefined objects from
the system, corresponding to the function value, that is k.

Observe that the calculation of partial functions has already been addressed
for the case of transition P systems [5], and also for virus machines [6]. In our
proposal, we will define P systems that only use plasmids and plasmid mobility
rules throughout the membrane space. That is, in each membrane there are no
other rules than those that only serve to mobilize the plasmids. In addition, we
will use two designed symbols # and $ to denote that the plasmid starts and
ends its execution, respectively.

P systems for basic functions

– A plasmid for the zero function z(n) = 0 is proposed through the following
rules:



Computing partial functions by plasmids 201

r1 : #a→ #
r2 : #→ $
and ρzero : r1 > r2.
So, pzero = ({r1, r2}, ρzero). Then, the P system to compute the zero function
is defined as follows:

Πzero = ({a,#, $}, {1}, [ ]1 , an#, ∅, ∅, ρ, pzero, ∅, pzero, 1, 1)

In this case, the relation ρ is empty.

– A plasmid for the successor function succ(n) = n+ 1 is performed through
the rule r : #a → $aa. Observe that the 0 value can be encoded by the
distinguished symbol @, and it can be incremented by the rule r′ : @→ $a.
So, psucc = ({r, r′}, ∅), and the P system is defined as follows:

Πsucc = ({a,#, $,@}, {1}, [ ]1 , an#, ∅, ∅, ρ, psucc, ∅, psucc, 1, 1)

where the relation ρ is empty.

– A plasmid for every projection function fk(n1, · · · , nk, · · · , np) = nk can be
defined through the following rules:
ri : ai → λ for every 1 ≤ i ≤ p and i ̸= k
· · ·
rk : #ak → $ak
So, pprk = ({r1, r2 · · · , rk, · · · rp}, ∅), and the P system is defined as follows

Πprk = ({a1, a2, · · · , ap,#, $}, {1}, [ ]1 , w1, ∅, ∅, ρ, pprk , ∅, psucc, 1, 1)

with w1 = an1
1 an2

2 · · · a
np
p #. Observe that for any zero value, taken as a

function argument, we could provide additional symbols. For example, if
nj = 0, then this value could be encoded as @j , and a rule to eliminate it is
@j → λ, in addition the rule #@k → $@k should be added.
As in the previous cases, the relation ρ is empty.

A P system for substitution

Let us consider the function f(n1, · · · , np) = h(f1(n1, · · · , np), · · · , fk(n1, · · · , np)),
and the P systems with plasmids Πh, Πf1 , Πf2 , · · · , Πfk that compute their cor-
responding functions.

A P system with plasmids, Πf for the function f can be defined as follows
(we will overview the definition without going into details):

– The membrane structure µf = [ [ ]input µh µf1 · · ·µfk [ ]aux]0
– In the input membrane the input parameters are encoded as an1

1 an2
2 · · · a

np
p

– There are designated plasmids that activate the execution at every mem-
brane subsystem Πh, Πf1 , Πf2 , · · · , Πfk

– There are plasmids that transform the output of every subsystem Πfj as an
encoded value amj
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– There are mobility rules for plasmids such that the computation of f is made
through the following scheme:
1. In an increasing order

(a) Move the input values to the subsystem Πfi

(b) Calculate fi by Πfi

(c) Encode the output j as aji in the membrane aux
2. Move the values aj11 a

j2
2 · · · ajkk from the membrane aux to the subsystem

Πh

3. Move the output value of Πh to the output membrane

The computation of the function f is carried out by using a sequential strat-
egy. That is, first the functions fj are calculated sequentially and, finally, the
function h is computed.

A P system for primitive recursion

Let f and g be functions computed by the P systems Πf and Πg. Then, the
function h defined as

h(0, n1, · · · , nk) = g(n1, · · · , nk)
h(n+ 1, n1, · · · , nk) = f(n, h(n, n1, · · · , nk), n1, · · · , nk)
can be computed by a P system with plasmids Πh (we will overview the

definition without going into details):

– The membrane structure µh = [ [ ]input µg µf [ ]aux [ ]counter [ ]comparator ]0
– In the input membrane, the input parameters are encoded as an0a

n1
1 an2

2 · · · ank

k

– In the counter membrane, the initial value is zero, encoded by the distin-
guished symbol @, and the k value is encoded as ak

– There are designated plasmids that activate the execution at both membrane
subsystem Πg, Πf

– There are plasmids that transform the output of every subsystem Πf and
Πg as encoded values amf and ang

– There are mobility rules for plasmids such that the computation of h is made
through the following scheme:
1. If the content of the counter membrane is zero then calculate the function
g by Πg, and move the output to membrane aux as an encoded value

2. Increase the counter value by plasmid psucc
3. Compare the counter value with the first parameter of h, n, in membrane
comparator. If the counter is less than n then
(a) Move the input parameters n1, · · · , nk, the counter value and the

value in the membrane aux to the subsystem Πf

(b) Calculate function f in Πf

(c) Move the output to the aux membrane

Otherwise go to step 5
4. Go to step 2
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5. Move the output value to the output membrane

The computation of the function h is carried out by using an iteration strat-
egy. First, the base case of recursion is calculated through g. Then, the recursion
variable is iteratively increased and the subsequent functions are calculated ac-
cording to the recursive scheme through f .

A P system for unbounded minimization

Let g be a function, and we define the function f as follows

f(n1, · · · , nk) = µ̂m[g(m,n1, · · · , nk)]
where µ̂m[g(m,n1, · · · , nk)] = m0 ⇔ g(m0, n1, · · · , nk) = 0 and ∀m < m0

g(m,n1, · · · , nk) ̸= 0
Let us assume that the P system Πg calculates the function g. Then a P sys-

tem with plasmids Πf can be defined to compute f as follows (we will overview
the definition without going into details):

– The membrane structure µf = [ [ ]input µg [ ]aux [ ]counter ]0
– In the input membrane, the input parameters are encoded as an1

1 an2
2 · · · ank

k
– In the counter membrane, the initial value is zero and the k value is encoded

as ak
– There is a designated plasmid that activates the execution of the membrane

subsystem Πg

– There is a plasmids that transforms the output of the subsystem Πg as an
encoded value ang

– There are movility rules for plasmids such that the computation of f is made
through the following scheme:
1. Set the counter membrane to zero encoded as @
2. Move the input parameters n1, · · · , nk, and the counter value to the

subsystem Πg and then calculate the function g by Πg

3. Move the output to membrane aux as an encoded value
4. Check if the content of membrane aux is zero. If so, move the counter

value to the output membrane and finish.
5. Increase the counter value by plasmid psucc and repeat the following

steps:
(a) Move the input parameters n1, · · · , nk and the counter value to the

subsystem Πg

(b) Calculate function g in Πg

(c) Move the output value to the aux membrane
6. go to step 4
7. Move the output value to the output membrane

As in the case of primitive recursion, the computation of the function f is
carried out by using an iteration strategy. First, a counter is set to zero, and it
is iteratively increased to find the first value that makes the function equal to
zero. Observe that, for the case that f has no value equals to zero, the proposed
system never halts. Hence, the function is undefined and partial.
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Conclusions

In this work, we have presented several P systems with plasmids to calculate par-
tial recursive functions in the framework of membrane computing, by adjusting
the P system schemes to the functional definitions. This is a first approximation
that can probably be improved from the computational complexity point of view,
by transforming some of the sequential and iterative schemes into purely par-
allel schemes, maybe by introducing membrane creation and duplication rules.
We will explore these aspects in future works.
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